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Part 1(b) Al. Chem.Synth.Org (ACS)

Al. applications

Task
P Al-assisted pharmaceutical discovery = Virtual screening
0 Structure based

0 Ligand-based
= De novo drug design

= Property prediction
0 Physicochemical

o0 Pharmacokinetic
= Drug repurposing

Concepts of Artificial Intelligence for Computer-Assisted Drug | Chemical Rev, 2019, 119, 18, 10520-10594,
DOI: 10.1021/acs.chemrev.8b00728

Discovery

Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider and Shengyong Yang
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Applications of Al

0 Organicsynthesis
= HTSinvitro
ADMET-SXR in silico

Iterative cycle to improve
o0 Functional properties of drug candidates

Computer-calculated compounds, Researchers are deploying N AT UR E, 557,2018, S5 5-S57
artificial intelligence to discover drugs
Nic Fleming

Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug
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Methods 0 Deep NNs Learning 0 ReLeaSE (Reinforcement
0 Generative + Learning for Structural
Predictive Evolution)
Structure 0 SMILES strings Model 0 Recurrent NNs
input interpretation 0 Adversarial autoencoder
Alg.
0 First phase: Supervised
Parameter optimization training of generative and
Generative model predictive models separately
oo{aaiosz) coslenaN 0 Second phase: ReLeaSE
training of both models
/ E j ]Olntly
7 i G T 7 0 Generation of new chemical
— structures (feasible SMILES
Generated :
Reward SMILES st_rlngs) _
_ Beaicti e iode] L Biased towards desired
Property physical/biological
properties
0 Predictive models
P 0 Forecast of desired
cleceeel properties of generated
novo—compounds

Fourth industrial revolution

Deep reinforcement learning for de novo drug design

o0 Combination of big data + Al (Knowledge + Robots)
World economic forum opines a transformation in
scientific discovery efforts in future

Sci. Adv. 2018;4: eaap7885,
DOI: 10.1126/sciadv.aap7885

Mariya Popova, Olexandrlsayev, Alexander Tropsha

Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

The rise of deep learning in drug discovery

Methods o SVM Learning 0 Deep learning
o Fully connnected NNs
o Convolutional NNs
0 Recurrent NNs
Software 0 Tensorflow Hard-ware o GPU
o Caffe o TPU
0 Pytorch
0 Keras
0 Theano
Feature Advantage Feature Advantage
Rectified linear unit Awvoids vanishing gradients o Convolutional Large numbers of input
layers variables
0 Pooling layers
o Dropout Surmounts overfitting problem
o0 Dropconnect

Drug Discovery Today, 23, 2018,
doi.org/10.1016/j.drudis.2018.01.039

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona and Thomas Blaschke

Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Methods.Chem

0 Chemical graph theory
0 Chemical fingerprints

Methods.math

0 Deep NNs
0 Deep Learning
o SVM
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o Random forest
0 Naive Bayes

Machine learning in chemo informatics and drug discovery Drug Discovery Today, 2018,
doi.org/10.1016/j.drudis.2018.05.010

Yu-Chen Lo, Stefano E. Rensi, Wen Torng and Russ B. Altman
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Goal o Design of Discipline Automated chemistry
= Automated three-to- Convergence of artificial
five-step synthesis intelligence + chemistry >
0 Prediction improved drug discovery
LI Property
L Activity
Methods 0 Recurrent neural Learning 0 One-shot learning
networks 0 Transfer learning
0 SMILES representations
( ChEMBL database)
o Variational
autoencoders
0 Multitask deep NNs

Evolution of Al assisted automatic synthesis

Level o Design 0 Synthesis

0 o Manual o Manual

1 0 Input from computational analysis o Manual

2 o Manual + o Manual

0 Occasional input from Al design

3 Al design Partial automated synthesis + Significant input from
human expert

4 Al design Automated synthesis + occasional input from human
expert

5 Al design Automated synthesis + No (or)minimal input from
human expert

The convergence of artificial intelligence and chemistry for FutureMed. Chem.,2018.
improved drug discovery

Clive P Green Ola Engkvist& Garry Pairaudeau
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Methods Graph neural network Learning Deep learning
Task Predicting drug—target Training DUD-E set
interaction 72 proteins
Testing 25 proteins
DUD-E DUD-E PDBbind PDBbind
active inactive positive negative
training 15864 973260 1598 9511
test 5841 364149 496 2735

J. Chem. Inf. Model. 2019, 59, 398139838,
DOI: 10.1021/acs.jcim.9b00387

Predicting Drug—Target Interaction Using a Novel Graph

Neural
Network with 3D Structure-Embedded Graph Representation
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| Jaechang Lim, Seongok Ryu, Kyubyong Park, YoJoong Choe, Jiyeon Ham and Woo Youn Kim |
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Task Multidrug resistant | Predictio | Compound CNNbased autoencoders >>
tuberculosis patients | n representation [voxel-based code;
(230) Gaussian blur of atom]
Methods o0 Convolutional NN + DNN Image, Voice and Text
0 Support vector machines performance Recognition,
0 Deep generative models . Autonomous Driving, >>
Human accuracy

4 N e
Modern Artificial | Clinical Insights

=R R and Tools
Omics Data — Intelligence
===t i
—Gh e o Deep Leamning Diagnostics
Lty HRLi Generative Adversarial Biology Insights
e Networks =l and Tools
. einforcement Learning Therapeutics &
Imaging Data Symbolic Learning EDMAEVIY
Chemistry
=== == Meta Learning Insights and Tools

Clinical Data Prophylactics

SVM RF GBM

—————ae ——
MetaData DFS KNN ! Novel Chemistry

. >/
Potential of deep learning for drug discovery

Artificial Intelligence for Drug Discovery, Biomarker Mol. Pharmaceutics 2018, 15, 4311-4313,

Development, and Generation of Novel Chemistry DOI: 10.1021/acs.molpharmaceut.8b00930

Alex Zhavoronkov
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

CQC | o To accelerate development of Applications 0 Captures greenhouse gases (like
environmental catalysts carbon dioxide)
BASF taps Citrine for catalyst research CEN.ACS.ORG, 2018
RICK MULLIN

Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Compounds | PDB-derived ASTRAL dataset4 Molecule Sequence-derived 1D-
representation features

Discipline Al assisted Software 0 Python scriptin

o Cardiac contractility intervention Tensor Flow

0 Therapeutic disruption of specific 0 Runfrom

protein associations PyMol 2.3 platform,
Schrodinger
Methods 0 Deep learning
0 2-Hidden Layer NN

Artificial Intelligence Steering Molecular Therapy in the J. Chem. Inf. Model.,2019, DOI:
Absence of Information on Target Structure and Regulation 10.1021/acs.jcim.9b00651

Ariel Fernandez
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

For prediction L Ultimate goal in drug design

+ Adjunct v ili
Computational + C : fiment g Ability to develop hypotheses
models omplimen Al Irrational suggestions based on
+  Supplement creativity, insight

v" Automation, adaptability,

I Nota panacea
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o If conflicting, to search for
correct paradigm
o Ifredundant, no new information

A Novel In Silico Approach to Drug Discovery via J. Chem. Inf. Model. 2009, 49, 1105-1121
Computational Intelligence

David Hecht and Gary B. Fogel
Cl.Drug_Discovery — Cl.Discovery_Drug — Cl.Discovery — Cl.Drug

Hype and
Overpromise
Innovation @ The Storm of G
Disillusionment
Time
Artificial Intelligence in Drug Design-The Storm Before the ACS Medicinal Chemistry Letters, 2018, 9, 12,
Calm? 1150-1152,
DOI: 10.1021/acsmedchemlett.8b00500
Allan M. Jordan
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug
Methods | o Deep NN Informatics 0 Molecular informatics

0 Restricted Boltzmann NN
o Convolutional NN

Physicochemical Residue Correlated Pharmacophare

properties frequency properties features
2 ¥ ¥ ¥
First-stage
MLP ] models

Drug Discovery

Second stage
model

Prediction

Deep Learning in Drug Discovery Mol. Inf. 2016, 35, 3 — 14,

DOI: 10.1002/minf.201501008

Erik Gawehn, Jan A. Hiss, and Gisbert Schneider
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

i 1]
Database ChEMBL version 24.1 L 4276 assays

L1 0.5 million compounds
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1.4 million pIC50s
NVS data 11 805 assays
1.8 million compounds
A 18.3 million plC50s
Methods o0 Profile-quantitative Models B 8558 successful models
structure—activity relationship
(PQSAR)
Testing = pQSAR models updated o Virtual screening
every month 0 Selectivity design
= Predictions C 0 Toxicity promiscuity
Applications prediction
0 Mechanism-of-action
rediction
Learning Transfer learning NVS & ChEMBL
Step one: Descriptors: Morgan 2 substructural fingerprints;
Alg Models: random forest regression
Step two: PLS model

All-Assay-Max2 pQSAR: Activity Predictions as Accurate as J. Chem. Inf. Model., 2019,
Four-Concentration 1C50s for 8558 Novartis Assays DOI: 10.1021/acs.jcim.9b00375

Eric J. Martin, Valery R. Polyakov, Xiang-Wei Zhu, Li Tian, Prasenjit Mukherjee, and Xin Liu
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Task Computational Drug discovery
Methods = Machine learning (ML)
= Artificial intelligence (Al)
Data Big data
Domain 0 Fourth paradigm of science
0 Fourth industrial revolution
= Bigdata — Al

Transforming Computational Drug Discovery with Machine ACS Med. Chem. Let. 2018, 9, 11, 1065-
Learning and Al 1069,

DOI: 10.1021/acsmedchemlett.8b00437
Justin S. Smith, Adrian E. Roitberg, and Olexandrisayev

Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

To design molecules with balance
0 Potency, selectivity pharmacokinetics

Pharma company | GlaxoSmithKline

GSK in computing pact with Exscientia C&EN Global Enterprise, 2017, 95, 28, 15,

DOI: 10.1021/cen-09528-buscon12

LISA JARVIS
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

0 Designing synthesizable molecules with
desired range of properties
0 Pharmaceutical Discovery

= Property prediction Machine

Al tools = Materials synthesis Learning

Artificial intelligence to spread in drug research C&EN Global Enterprise 2019, 97, 2, 38-38

Rick Mullin
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug
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Editorial : Special issue on “Artificial | Emphasis:
Intelligence in DrugDiscovery” in = Impact of Al on drug discovery at present
Journal of Medicinal Chemistry = Not how they might add value in the future
= High-quality research yielding “negative” results
Ex: studies showing no advantages of complex computational
methods over simplerapproaches in specific applications.
The Future Is Now: Artificial Intelligence in Drug Discovery J. Medicinal Chemistry, 2019, 62, 11, 5249,
DOI: 10.1021/acs.jmedchem.9b00805

JirgenBajorath, Steven Kearnes, W. Patrick Walters, Gunda I. Georg, Shaomeng Wang,
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Task Prediction Drug activity

Compounds Peptides Disease | Cancer

Database Chinese traditional medicines (Largest collection)

Methods Machine learning models Learning | Deep Learning models
0 Random forest
0 Adaboost regressor
0 Gradient boosting regressor

CQC 300 ns MD simulation Docking

Artificial Intelligence Approach to Find Lead Compounds for J. Phys. Chem. Lett. 2019, 10, 4382—4400
Treating Tumors DOI: 10.1021/acs.jpclett.9b01426

Jian-Qiang Chen, Hsin-Yi Chen, Wen-jie Dai, Qiu-JieLv, and Calvin Yu-Chian Chen
Al.Drug_Discovery — Al.Discovery_Drug — Al.Discovery — Al.Drug

Part 1(b): Al.Chem.Synth.Org

Field Biomedicine Resources & = |BM’s Watson

high-end Tools = Al ML

= Cognitive computing
resources

Applications Accurate predictions
Disease diagnosis, drug repurposing
Protein—small-molecule interactions
B Biochemical pathways
B Human toxicology

Tools Applications

Al, ML, cognitive computing = To fill vast knowledge gap of between cellular responses in
in vitro and hepatotoxic risk in humans

= To process electronic health records (EHRS)

= To settle claims data

DeepNNs To elucidate species-specific differences between drug-
induced liver injury (DILI) in animal models and reported
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incidents in humans

Task Prediction Discipline - Adverse drug reactions
O Hepatotoxicity (ADRs)
- Drug-induced liver
injury (DILI)
Maodels nvito Predictions
" “a
n wive L
s 7/ ﬁ
-u..': S "—_;’ i
In sifico
.'.lv..;:.,.l. : %
.'_ '.h

Mixed-learning

Applications of DNN

Deep neural nets & deep learning
= Cheminformatics
= Bioinformatics
= Drug discovery

method(s)

= LDA

= Naive Bayes

= SVM

= Classification
trees

= Regression

= k-nearest
Neighbors

=  Ensemble of
classifiers

Technologies

Undirected graph recursive
neural network (UGRNN)

Advancing Predictive Hepatotoxicity at the Intersection of Chem. Res. Toxicol. 31, 2018, 412—430,

Experimental, in Silico, and Artificial Intelligence

Predict DILI more accurately from physicochemical
data

DOI; 10.1021/acs.chemrestox.8b00054

Keith Fraser, Dylan M. Bruckner, and Jonathan S. Dordick

Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

Task 0 Prediction of reactions by algorithms | Database = US patents
0 Automated lab equipment

= Reaxys reactions database.
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Unique LL Little human help Caution Aim
features Artificial intelligence 0 Not to eliminate the chemist
L) Robot synthesises molecules o Providing more free time for
chemists
= For creativity,
innovation.
Outcome. For a given molecule Outcome. |=  Automated synthesis
planning 0 Propose synthetic routes Synthesis |=  Robotic arm
0 Reaction conditions = Experiment sets up
o Evaluates best path LA Connecting tubes
= Number of steps LL] Supplying different reagents
= Predicted yield. [l Flow-chemistry modules
Reactors
L1 Membrane-based separators
Compounds LA Aspirin 91% yield

synthesized

(S)-warfarin  78% yield
Five drug-related compounds

n

Automating synthesis from planning to execution

CEN.ACS.ORG, 20109.

SAM LEMONICK

AdvancementApplicationAnnouncement>CNN JArtificial Intelligence (Al)
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o Tools
(AN
s

n

Computer
Equipment

Goal: Organic synthesis

Graphical communication
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L
rcrnemist enters target molecule _]

~{ Chemist specifies preferred operation |

| Perceive structural features |

4
| Choose goals (strategy) |

| Choose mechanisms to satisfy strategy |

)
| Assign priorities |

¥
~{ Apply highest priority mechanism |No more
$

| Delete invalid structures |

| Assess goal attainment |

i
Update tree
] Output structures [
\
(Nol' Qut of resources or interrupted ? |
Yes
| Chemist evaluates structures | «—!

L Nol Chemist satisfied? |
fYes

Al tools

Software
Heuristics
=  Chemical knowledge

Computer-Assisted Design of Complex Organic Syntheses SCIENCE, 166, 1969, 178-192.

E. J. Corey and W. Todd Wipke
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

Goal ! F|nd|ng better Compounds faster Collaboration v Monsanto, drug firms
via artificial intelligence v' universities

Sub-goal | 50 distinct molecular discovery programs

Al start-up Atomwise raises $45 million CEN.ACS.ORG, 2018.

RYAN CROSS
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.
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Synthesis)

0 SYNCHEM
= |mprovements: SYNCHEM?2

0 IGOR (Interactive Generation of
Reactions)

for Synthesis Planning)

Organic retro-synthesis (Basis : Logic and Heuristics)
0 SECS (Simulation and Evaluation of Chemical

Organic

0 KOSP system (Knowledge base-Oriented system

O O0OO0OO0Oo (e}

o

STOECH,-- generate automatically all the
species by a certain transform.

EROS (Elaboration of Reactions for
Organic Synthesis)

SYNGEN + FORWARD

SESAM

CHIRON

LHASA

CAMEO (Computer Assisted Mechanistic
Evaluation of Organic)

WODCA (Workbench for the
Organisation of Data for Chemical
Application)

Computer-aided organic synthesis

Chem. Soc. Rev., 2005, 34, 247-266,
DOI: 10.1039/h104620a

Matthew H. Todd

Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

Task Organic synthesis with CHEMPUTER

CHEMPUTER | [

LA Hardware, software
Robotic system

LL] Synthesis abstraction
LA Flow chemistry

Outcome Leads to a road map

made on demand
Generate new discoveries entirely
automatically

Universal Chemical Synthesis and Discovery
with ‘“The Chemputer’

v" Molecules can be discovered, optimized,

v Can be verified, optimized, repeated

Trends in Chemistry, Month 2019,
Doi.org/10.1016/j.trechm.2019.07.004

Piotr S. Gromski, Jarostaw M. Granda, and Leroy Cronin

Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic — Al

Task Reaction Prediction Training o0 Polar, hypervalent, radical,
data pericyclic reactions
0 Graduate level textbook
Machine Filtering models Software chemoinformatics
Learning O Trained at the level of portalhttp://cdb.ics.uci.edu/
individual MOs
-> Reduces space of possible
reactions
Applications Retro-synthetic search
0 Regioselectivity
classification
o0 Formability of bonds

at the Mechanistic Level Using Machine Learning

ReactionPredictor: Prediction of Complex Chemical Reactions

J. Chem. Inf. Model., 52, 2012, 2526—2540,
dx.doi.org/10.1021/ci3003039

Matthew A. Kayala and Pierre Baldi

Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

AdvancementApplicationAnnouncement>CNN DArtificial Intelligence (Al)

181



http://cdb.ics.uci.edu/

Task Predict course of arbitrary chemical reactions 0 Physical & chemical laws
Methods 0 Rule-based expert systems
0 Inductive machine learning
Database | Reaction Explorer Data = 1630 full multistep reactions

2358 distinct starting materials,
intermediates

2989 productive mechanistic steps
6.14 million unproductive
mechanistic steps

Machine learning
1) Atom level reactivity filters trained ones to prune 94.00% of nonproductive reactions with a 0.01% error
rate
2) An ensemble of ranking models trained on pairs of interacting MOs - learns a relative productivity
function over mechanistic steps of system

CAMEO7 0 Complex set of heuristics O Beppe Multistep reactions —identification of
for different classes 0 Sophia 0 Reactive sites
Predicts multistep 0 Reactions
reactions
EROS8 0  Uses configurable system Reaction Explorer Detailed graph rewrite rules for
composed of multistep system individual mechanistic steps
reaction Not like a common practice of
0 Graph-based rule libraries a single transformation for an
0 Extra modules to add more overall reaction from starting
constraints materials to final products.

O Heats of formation, Rules described using an
physicochemical alternative physically
properties, kinetic motivated “electron-flow”
simulations Specification - allows

visualization of the “arrow-
pushing” diagrams for each
mechanistic step

ToyChem1l | o Build on the EROS idea of

Robial2 physicochemical constraints

Limitatios Rule-based reaction prediction

Learning to Predict Chemical Reactions

Curation of large amounts of
0 Rules, exception handling
0 Expert knowledge

Unmanageable at larger scales

Adding/modifications of new existing
ancetedents/consequent difficult

Lack generality

If  aparticular reaction pattern not encoded

explicitly,
Then system will never be able to return the
corresponding reaction.

o
o
o

Knowledge-based
Human encoding of heuristics
Graph-rewrite

Computationally tractable
o Patterns, and constraints
Quick predictions

Matthew A. Kayala, Chlo e-Agathe Azencott, Jonathan H. Chen, and Pierre Baldi

AdvancementApplicationAnnouncement>CNN DArtificial Intelligence (Al)
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Task 0 Molecular design Discipline 0 Cell metabolism
o0 Optimization 0 Prebiotic chemistry

Chemical heuristics -> Path of traversing high-dimensional reactive PES

Methods CQC structure optimizations > 3D-geometric structures
—> Eenergies of the products & intermediates

Test Case Heuristic-CQC computationsreproduce experimentally observed reaction products, major
study reaction pathways EX: autocatalytic cycles of formose reaction i.e. self-condensation of

formaldehyde in alkaline solution and at surfaces of various minerals
Complex Chemical Reaction Networks from Heuristics-Aided J. Chem. Theory Comput., 10, 2014,
Quantum Chemistry 897-907, dx.doi.org/10.1021/ct401004r

DmitrijRappoport, Cooper J. Galvin, Dmitry Yu. Zubarev, and AlanAspuru-Guzik
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

LHAISA'l (Logic and Heuristics Applied to Synthetic - lacks stereochemical capability modules
Analysis)

Computer-assisted Analysis of Complex Synthetic Q. Rev. Chem. Soc., 1971,25, 455-482
Problems (Review)

E. J. Corey
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

Task Conformations (off- LL] Large computational DFT database
equilibrium) calculation
L] Databasel7

Database o Contains 166.4Billion molecules
containing up to 17 atoms of C, N, O, S,
and halogens

Compounds | 20 Million subset: 57,462 | Future LL] Development of future general-purpose machine
small organic molecules learned CQC potentials

Data Descriptor: ANI-1, A data set of 20 million calculated Sci. Data 4:170193

off-equilibrium conformations for organic molecules doi: 10.1038/sdata.2017.193 (2017).

Justin S. Smith, Olexandrlsayev& Adrian E. Roitberg
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic — Al

Auto-optimized organic synthesis system Modules
0 Unique features Heated reactor (up to 120°C)
o0 Fully integrated Cooled reactor (to —20°C),
0 Versatile Light-emitting diode (LED)-based photochemistry
0 Reconfigurable Photochemistry reactor
T m——— Packed-bed reactor (for solid supported reagents;

catalysts, passive mixing)
Membrane-based liquid-liquid separator.(purification via
g H e extraction)

Ph;'m (:-ED) :ea*ed §°°'ed 0 Bypass (for reagent addition in a minimal volume,
eactor eactor eactor mixing, unused bay)

= 2

Packed Bed Liquid-liquid Bypass
Reactor Separator

| Applications |
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L] Automated optimization of a specific reaction or sequence of
reactions

LL] Synthesis of a range of substrates under user-selected conditions, ex:
Scope of transformation under optimum conditions
L1 Scale-up of a selected synthesis from a previous optimum conditions

Reconfigurable system for automated optimization of diverse Science 361, 2018, 1220-1225.
chemical reactions

Anne-Catherine Bédard, Andrea Adamo, Kosi C. Aroh, M. Grace Russell, Aaron A. Bedermann, Jeremy
Torosian, Brian Yue, Klavs F. Jensen, Timothy F. Jamison

Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.

L Forward-reaction prediction Input: starting materials

IBM’s innovative approach Method: 395 496 reactions trained with NN
Output: Prediction of reaction under new experimentalconditions.
Figure of merit: Correct 80 percent of the time

Chematica Computer program capable of designing novel
efficient syntheses of medicinally relevant molecules

Manual organic Synthesis Synthesis and retrosynthesis
0 Hand coded reaction scheme Corey and Wipke
o0 Execution in lab o0 Envisioned machine design using handcrafted rules
0 Time consuming task (or reaction templates)
o Nonoptimized solutions - Writing rules remained a time-consuming task
(frequent) 0 Remedy: Deep chemical expertise

Analogy between

Organic synthesis Solitaire game
Pieces on the board Beginning of game Precursor molecules
in Solitaire game
Winning game Only one piece Target
Remains Molecule
Google’s Al program Alphazero Chess Human player

+ Takes few minutes to learn to play
- Decades of lifetime to become a master
Alphazero
Input: Only rules of chess
Learning: Few hours of self-learning
Outcome:
I Adventurous and unconventional way of playing

I Beats human masters or existing programs
Future of chemical synthesis; drug v Chemistry is more complex than chess game
discovery; medical diagnosis I Machine learning + Deep NN + Heuristics = Speed up
drugs development

Artificial Intelligence: The Future for Organic Chemistry? ACS Omega 3, 2018, 1326313266,
DOI: 10.1021/acsomega.8b01773

Franck Peiretti and Jean Michel Brunel
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al
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coded heuristics (rules) of
chemistry to computers

Task Retrosynthesis Database Reaxys36 chemistry database
0 12.4 million single-step
reactions
0 Two sets of extracted rules
Methods Retrosynthetic routes discovery NNs Deep highway network with
0  Monte carlotree search bonds
0  Symbolic Al
Heuristic Methods for chemical synthesis
1970-2010 Now (This decade) Training: reaction centre
0 Expert chemists dictated hand- o Strong, general planning o Trainig: reactions published

algorithms

Symbolic representations
Autonomous learning
Rich history of chemistry
Accepting machine as an
assistant in chemical
synthesis

*OOO

Planning chemical syntheses with deep neural networks and

before 2015

o Validation & testing:

reactions data from 2015
onwards

0 Rollout policy network:
SLP, trained with 17,134
rules

Applications
Agriculture
Healthcare
Material science.

O o0O0O0

N AT U R E, 555,2018, 604-618

Graph of
Reaction (CGR)

Automatized assessment of protective group reactivity: a step
toward big reaction data analysis

symbolic Al doi:10.1038/nature25978
Marwin H. S. Segler, Mike Preuss & Mark P. Waller
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic —- Al.
Task To assess protective Database Reaxys database
groups (PGs) reactivity 0 Catalytic
as a function hydrogenation
ofreaction conditions reactions
(catalyst, solvent)
Methods Condensed Data = Chemical

transformations
proceeding under
ca. 271000
reaction
conditions

J. Chem. Inf. Model.,2016,DOl:
10.1021/acs.jcim.6b00319

Arkadii I. Lin, Timur IsmailovichMadzhidov, Olga Klimchuk, Ramil 1. Nugmanov, Igor S. Antipin, and

Alexandre Varnek

Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic — Al

Task

Al based
organic
synthesis

Database

Granted US patents
0 15000 experimental
reaction records

AdvancementApplicationAnnouncement>CNN DArtificial Intelligence (Al)
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Output Major product

Prediction of Organic Reaction Outcomes Using Machine
Learning

ACS Cent. Sci., 2017,
DOI: 10.1021/acscentsci.7b00064

Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen
Al.Sythesis_Organic —- Al.Sythesis —- Al.Organic — Al

Learning.Mach

Pharma research Commonman’s daily use
o0 Physicochemical property prediction
o Formulation prediction, 0 Internet searches
o ADME/tox 0 Voice recognition
0 Target prediction o Vision software
o0 Skin permeation 0 Phones, cameras
0 Self-driving cars.
0 Robots. Smartphones
o0 Voice recognition software like SIRI
O Read the news
0 Make a purchase on the internet via AMAZON
0 Use social network software
0 Large Companies Baidu, Google, Facebook etc.
Use deep learning in facial recognition algorithms
alone
Learning.Mach. o SVM Tasks 0 Binary classification
Cheminformatics 0 k-Nearest Neighbors 0 Multiple classes
0 Naive Bayesian

The Next Era: Deep Learning in Pharmaceutical Research

o Decision Trees

Pharm Res., 2016,
DOI 10.1007/s11095-016-2029-7

Sean Ekins
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Task

Drug discovery

Traditional experiments
- Expensive
- time consuming

Modern approach
= Machine learning approaches evolved into deep learning
= Bigdata
= High computing power

Machine learning

Deep learning

0 Volume (scale of data)

o Velocity (growth of data)

0 Variety (diversity of sources)
0 Veracity (data uncertainty)

o LDA = CNN
o SVM = DNN
o DTRF = RNN
0 kNN, = DBN
0 ANN
Limitations. Deep learning
Big’ data - Auvailability of a large amount of high-quality data

- Non availability of biomedical data generated by
pharmaceutical companies to academic institutesor public

- Lack of rational interpretations of associated biological
mechanisms

- Black box mode of 'Deep learning models

Commercial drugs and drug candidates discovered by computational methods
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Computational Method | Drug function Drug Year

Docking Inhibits Checkpoint kinase 1 CCT244747 | 2012
SAR/QSAR Inhibits hepatitis C RNA replication PTC725 2014
SAR/QSAR Treats spinal muscular atrophy RG7800 2016

Molecular modeling Inhibits phosphatidylinositol-3-kinase | GDC-0941 | 2015

From machine learning to deep learning: progress in machine

Drug Discovery Today, 22, 2017,
intelligence for rational drug discovery

http://dx.doi.org/10.1016/j.drudis.2017.08.010

Lu Zhang, Jianjun Tan, Dan Han and Hao Zhu
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Chematica = Autonomous design of synthetic | Application 0 Seven structurally diverse
program pathways targets +
One natural product

Figure of merit | o Computer generated synthetic schemes were
successfully executed in chemical laboratory
+  Offer significant yield

+ Improvements cost savings

+ Provide alternatives to patented routes

+  Produced targets that were not synthesized previously

Future targets = Insilico colleague

[multiprocessor machines potentially linked into larger clusters]
o0 Constantly learns
0 Never forgets,
0  Will never retire

= Syntheses of very complex targets

Efficient Syntheses of Diverse, Medicinally Relevant Targets Chem 4, 2018, 522-532,
Planned by Computer and Executed in the Laboratory doi.org/10.1016/j.chempr.2018.02.002

Tomasz Klucznik, Barbara Mikulak-Klucznik, Michael P. McCormack, Heather Lima, Sara Szymku,
ManishabrataBhowmick, Karol Molga, Yubai Zhou, Lindsey Rickershauser, Ewa P. Gajewska,
Alexei Toutchkine, Piotr Dittwald, Michat P. Startek, Gregory J. Kirkovits, Rafat Roszak,
Ariel Adamski, BiankaSieredzinska, Milan Mrksich, Sarah L.J. Trice,
and Bartosz A. Grzybowski
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Goal B Insilico Task > Hunting for small molecules
Medicine [inhibitors of discoidin domain
receptor 1 (DDR1)]
B DDRI inhibitors | Generative B Uses rewards (scored for molecules
Database B Kinase inhibitors | Reinforcement that satisfy its goals) to guide the
P Nonkinase learning algorithm
inhibitors
> Patent-protected
molecules
P Time period: 46 days
D The alg. proposed 30000 potential drugs
B Computer software filtered compounds
B Chemists selected six molecules
> Two of them showed no activity
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P Two other molecules with promising activity were synthesized in lab
One compound performed well against kinase screens
Its metabolic stability in mice tested

Analogy: Alg. to find Times Square in New York City using Google Maps

Al identifies drug candidate in weeks CEN.ACS.ORG, 20109.

SAM LEMONICK
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Task Predictive models Reactive trajectories Prediction of reactivity
o0 Conformational descriptors alone
Accuracy:85%

o0 Computational Statistical mechanics— | =  Simulates Kinetics of reaction
transition interface sampling
0 LASSO = Feature regularization
Methods o QM/MMTIS = Generated reactive trajectories
0 Machine learning = Selects features relevant to reactivity

Machine Learning Identifies Chemical Characteristics That J. Am. Chem. Soc., 141, 2019,

Promote Enzyme Catalysis 4108—-4118,DOI: 10.1021/jacs.8b13879
Brian M. Bonk, James W. Weis, and Bruce Tidor
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Methods | o Molecularmatched pair (MMP) analysis | Discipline | QSAR.special case
Application. Bio Application.Properties
o ADME = Aqueous solubility
O Bioisosterism = |ogD, lipophilicity
0 Plasma protein binding
0 Oral exposure
0 Potency
0 Intrinsic clearance
0 Metabolism
= Herg and p450 in vitro
0 Glucuronidation clearance
0 Selectivity against off-targets
0 Mode of action

Matched Molecular Pair Analysis in Short: Algorithms,

Computational and Structural Biotechnology
Applications and Limitations

Journal 15 (2017) 86-90,
http://dx.doi.org/10.1016/j.csbj.2016.12.003
Christian Tyrchan, Emma Evertsson
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Task Hospital mortality Predicting Learning | Deep learning models
Database | Electronic health records from two US academic | Data = Adult patients: 216,221
medical centers = Dataunrolled >

46,864,534,945 points
= Discharge diagnoses :1-228
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Scalable and accurate deep learning with electronic health Npj (Nature Partner Journals) Digital
records Medicine, 2018, 1:18 , doi:10.1038/s41746-
018-0029-1

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt , Peter J. Liu , Xiaobing
Liu, Jake Marcus, Mimi Sun , Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flore , Gavin E.
Duggan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin , Justin Tansuwan, De Wang, James Wexler,

Jimbo Wilson, Dana Ludwig , Samuel L. VVolchenboum, Katherine Chou, Michael Pearson, Srinivasan

Madabushi, Nigam H. Shah, Atul J. Butte , Michael D. Howell, Claire Cui, Greg S. Corrado and Jeffrey Dean
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Deep architectures and deep learningin chemoinformatics: the J Chem Inf Model. 2013;53(7):1563-75
prediction of aqueous solubility for druglikemolecules

Lusci A, Pollastri G, Baldi P.

Deep learning for druginducedliver injury J Chem Inf Model. 2015;55(10):2085-93

XuY, Dai Z, Chen F, Gao S, Pei J, Lai L.

Deep neuralnetsas amethod for quantitative structure-activity J ChemInf Model. 2015;55(2):263-74
relationships

Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V.

Deep biomarkers of human aging: application of Aging (AlbanyNY) 2016;8(5):1021-33
deep neural networks to biomarker development

Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A,Kolosov A

Deep architectures for protein contactmap prediction Bioinformatics. 2012;28(19):2449-57

Di Lena P, Nagata K, Baldi P.

Using deep learning toenhance cancer diagnosis and In: Proceeding of the30th International
classification conference on machine learning. Atlanta, GA:
JMLR: W&CP; 2013.

Fakoor R, Ladhak F, Nazi A, Huber M.

Deep convolutional neuralnetworks for annotating gene BMC Bioinf. 2015;16:147
expression patterns in the mousebrain

Zeng T, Li R, Mukkamala R, Ye J, Ji S.

A deep learning framework for modeling structural features of Acids Res. 2016;44(4):e32
RNAbinding protein targets. Nucleic

Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C

Modeling epoxidation of drug-like molecules with a deep ACS Cent Sci. 2015;1(4):168-80
machine learning network

Hughes TB, Miller GP, Swamidass SJ.

DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:80

Mayr A, Klambauer G, Unterthiner T, Hochreiter S.
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Deep learning applications for predicting pharmacological MolPharm. 2016;13(7):2524-30.

properties of drugs and drug repurposing using transcriptomic

e Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A.

Deep learning in label-free cell classification Sci Rep. 2016;6:21471
Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, NiaziKRet al.

Classifying and segmenting microscopy images with deep Bioinformatics. 2016;32(12):i52-9

multiple instance learning

Kraus OZ, Ba JL, Frey BJ.

Intra- and inter-fractional variation prediction of lung tumors IEEE JTranslEng Health Med.
using fuzzydeep learning 2016;4:4300112.

Park S, Lee SJ, Weiss E, Motai Y.

ACS.org ;sciencedirect.com : Information Source

R. Sambasiva Rao, School of Chemistry
Andhra University, Visakhapatnam
rsr.chem@gmail.com
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