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Artificial Intelligence (AI) 
Part 1(a) AI. Drug Discovery (Add) 

 
Part 1(b) AI. Chem.Synth.Org (ACS) 

 
   Task AI. applications 

    AI-assisted pharmaceutical discovery  Virtual screening  
o Structure based 
o Ligand-based 

 De novo drug design 
 Property prediction 

o Physicochemical  
o Pharmacokinetic  

 Drug repurposing 
Concepts of Artificial Intelligence for Computer-Assisted Drug 
Discovery 

Chemical Rev, 2019, 119, 18, 10520-10594, 
DOI: 10.1021/acs.chemrev.8b00728 

Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider and Shengyong Yang 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Applications of AI 

o Organicsynthesis  
 HTS in vitro 
 ADMET-SXR in silico  
 Iterative cycle to improve  

o Functional properties of drug candidates  
 

Computer-calculated compounds, Researchers are deploying 
artificial intelligence to discover drugs 

 N AT U R E, 557,2018, S 5 5-S57 

Nic Fleming 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

Journal of Applicable Chemistry 
2020, 9 (1): 171-190 

(International Peer Reviewed Journal) 
 

http://www.joac.info
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Methods o Deep NNs 

o Generative + 
Predictive   

Learning o ReLeaSE (Reinforcement 
Learning for Structural 
Evolution)  

Structure 
input 

o SMILES strings Model 
interpretation 

o Recurrent NNs  
o Adversarial autoencoder 

 

 

Alg. 
o First phase:  Supervised 

training of generative and 
predictive models separately 

o Second phase: ReLeaSE  
training of  both models 
jointly  
 

o Generation of new chemical 
structures (feasible SMILES 
strings) 
Biased towards desired 
physical/biological 
properties 
 

o Predictive models  
o Forecast of desired 

properties of generated 
novo–compounds 

Fourth industrial revolution o Combination of big data + AI (Knowledge + Robots)  
 World economic forum opines a transformation in 

scientific discovery efforts in future 
Deep reinforcement learning for de novo drug design Sci. Adv. 2018;4: eaap7885,                         

DOI: 10.1126/sciadv.aap7885 
Mariya Popova, OlexandrIsayev, Alexander Tropsha 

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 
 
Methods o SVM 

o Fully connnected NNs 
o Convolutional NNs 
o Recurrent NNs 

Learning o Deep learning  
 

Software o Tensorflow 
o Caffe  
o Pytorch  
o Keras  
o Theano 

Hard-ware o GPU  
o TPU 

Feature Advantage Feature Advantage 

Rectified linear unit  Avoids vanishing gradients o Convolutional 
layers 

o Pooling layers   

Large numbers of input 
variables 

o Dropout  
o Dropconnect   

Surmounts overfitting problem   

The rise of deep learning in drug discovery Drug Discovery Today,  23, 2018, 
doi.org/10.1016/j.drudis.2018.01.039 

Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona and Thomas Blaschke 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Methods.Chem o Chemical graph theory 

o Chemical fingerprints 
Methods.math o Deep NNs 

o Deep Learning  
o SVM 
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o Random forest 
o Naïve Bayes 

Machine learning in chemo informatics and drug discovery Drug Discovery Today, 2018, 
doi.org/10.1016/j.drudis.2018.05.010 

Yu-Chen Lo, Stefano E. Rensi, Wen Torng and Russ B. Altman 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Goal o Design of  

 Automated three-to-
five-step synthesis 

o Prediction 
 Property  
 Activity  

Discipline Automated chemistry 
Convergence of artificial   
intelligence + chemistry  
improved drug discovery 

Methods o Recurrent neural 
networks 

o SMILES representations 
( ChEMBL database) 

o Variational 
autoencoders 

o Multitask deep NNs 

Learning o One-shot learning  
o Transfer learning 

 
 

 

Evolution of AI assisted automatic synthesis 

Level o Design o Synthesis 

0  
 

o Manual o Manual 

1 
 

o Input from computational analysis o Manual 

2 o Manual +  
o Occasional input from AI design  

o Manual 

3  
 

AI design Partial automated synthesis + Significant input from 
human expert 

4 AI design  Automated synthesis + occasional   input from human 
expert 

5 AI design  Automated synthesis + No (or)minimal input from 
human expert 

The convergence of artificial intelligence and chemistry for 
improved drug discovery 

FutureMed. Chem.,2018. 

Clive P Green Ola Engkvist& Garry Pairaudeau 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Methods Graph neural network Learning Deep learning 

Task  Predicting drug−target 
 interaction 

Training 
 

DUD-E set  
72 proteins 

Testing  25 proteins 

 
Predicting Drug−Target Interaction Using a Novel Graph 
Neural 
Network with 3D Structure-Embedded Graph Representation 

J. Chem. Inf. Model. 2019, 59, 3981−3988, 
DOI: 10.1021/acs.jcim.9b00387 
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Jaechang Lim, Seongok Ryu, Kyubyong Park, YoJoong Choe, Jiyeon Ham and Woo Youn Kim 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Task  Multidrug resistant 

tuberculosis patients 
(230) 

Predictio
n 

Compound 
representation 

CNNbased autoencoders >> 
[voxel-based code;  
Gaussian blur of atom] 

Methods o Convolutional NN + 
o Support vector machines  
o Deep generative models 

DNN 
performance 

. 

Image, Voice and Text 
Recognition,  
Autonomous Driving, >> 
Human accuracy   

 
Potential of deep learning for drug discovery 

Artificial Intelligence for Drug Discovery, Biomarker 
Development, and Generation of Novel Chemistry 

Mol. Pharmaceutics 2018, 15, 4311−4313,  
DOI: 10.1021/acs.molpharmaceut.8b00930 

Alex Zhavoronkov 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
CQC o To accelerate development of 

environmental catalysts 
Applications o Captures greenhouse gases (like 

carbon dioxide) 
BASF taps Citrine for catalyst research CEN.ACS.ORG,  2018 

RICK MULLIN 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Compounds PDB-derived ASTRAL dataset4 Molecule 

representation 
Sequence-derived 1D-
features 

Discipline AI assisted 
o Cardiac contractility intervention  
o Therapeutic disruption of specific 

protein associations 

Software o Python script in 
Tensor Flow   

o  Run from 
 PyMol 2.3 platform, 
Schrödinger 

Methods o Deep learning 
o 2-Hidden Layer NN 

  

Artificial Intelligence Steering Molecular Therapy in the 
Absence of Information on Target Structure and Regulation 

J. Chem. Inf. Model.,2019, DOI: 
10.1021/acs.jcim.9b00651 

Ariel Fernández 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 

Computational 
models 

For prediction  
+ Adjunct 
+ Compliment 
+ Supplement  

! Not a  panacea   

AI  

 Ultimate goal in drug design 
 Ability to develop hypotheses  
 Irrational suggestions based on 

creativity, insight 
  Automation, adaptability,  
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o If conflicting, to search for 
correct paradigm 

o If redundant, no new information 
A Novel In Silico Approach to Drug Discovery via 
Computational Intelligence 

J. Chem. Inf. Model. 2009, 49, 1105–1121 

David Hecht and Gary B. Fogel 
CI.Drug_Discovery — CI.Discovery_Drug — CI.Discovery — CI.Drug 

 
 

 
Artificial Intelligence in Drug Design-The Storm Before the 
Calm? 

ACS Medicinal Chemistry Letters, 2018, 9, 12, 
1150-1152,  

DOI: 10.1021/acsmedchemlett.8b00500 
Allan M. Jordan 

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 
 

Methods o Deep NN  
o Restricted Boltzmann NN 
o Convolutional NN 

Informatics o Molecular informatics 

Drug Discovery 

 
Deep Learning in Drug Discovery Mol. Inf. 2016, 35, 3 – 14,  

DOI: 10.1002/minf.201501008 
Erik Gawehn, Jan A. Hiss, and Gisbert Schneider 

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 
 

 Database ChEMBL version 24.1  4276            assays 
 0.5 million  compounds  
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 1.4 million  pIC50s 

NVS data  
 

 11 805         assays  
 1.8 million   compounds  
 18.3 million  pIC50s 

    

Methods o Profile-quantitative 
structure−activity relationship 
(pQSAR) 

Models     8558 successful models 

Testing    pQSAR models updated 
every month  

 Predictions   Applications 

o Virtual screening 
o Selectivity design 
o Toxicity  promiscuity 

prediction 
o Mechanism-of-action 

rediction     
Learning Transfer learning    NVS &  ChEMBL  

Alg 
Step one: Descriptors: Morgan 2 substructural fingerprints;  
                 Models:  random forest regression  
Step two: PLS model 

All-Assay-Max2 pQSAR: Activity Predictions as Accurate as 
Four-Concentration IC50s for 8558 Novartis Assays 

J. Chem. Inf. Model., 2019,  
DOI: 10.1021/acs.jcim.9b00375 

Eric J. Martin, Valery R. Polyakov, Xiang-Wei Zhu, Li Tian, Prasenjit Mukherjee, and Xin Liu 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
Task  Computational  Drug discovery 

Methods  Machine learning (ML)  
 Artificial intelligence (AI) 

Data Big data 

Domain o Fourth paradigm of science  
o Fourth industrial revolution 

 Big data  — AI 
Transforming Computational Drug Discovery with Machine 
Learning and AI 

ACS Med. Chem. Let. 2018, 9, 11, 1065-
1069,  

 DOI: 10.1021/acsmedchemlett.8b00437 
Justin S. Smith,  Adrian E. Roitberg, and OlexandrIsayev 

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 
 

 AI  To design molecules with balance  
o Potency, selectivity pharmacokinetics 

Pharma company GlaxoSmithKline 
 

GSK in computing pact with Exscientia C&EN Global Enterprise,  2017, 95, 28, 15, 
DOI: 10.1021/cen-09528-buscon12 

LISA JARVIS 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
 
AI tools  
 

 Property prediction  
  Materials synthesis 

Machine 
Learning 

o Designing synthesizable molecules with 
desired range of properties  

o Pharmaceutical Discovery 
Artificial intelligence to spread in drug research C&EN Global Enterprise  2019, 97, 2, 38-38 

 Rick Mullin 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 
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Editorial :  Special issue on “Artificial 
Intelligence in DrugDiscovery” in 
Journal of Medicinal Chemistry 

Emphasis: 
 Impact of AI on drug discovery at present  
 Not  how they might add value in the future 
 High-quality research yielding “negative”  results 
 Ex: studies showing no advantages of complex computational 

methods over simplerapproaches in specific applications. 
The Future Is Now: Artificial Intelligence in Drug Discovery J. Medicinal Chemistry, 2019, 62, 11, 5249,  

DOI: 10.1021/acs.jmedchem.9b00805 

JürgenBajorath, Steven Kearnes, W. Patrick Walters, Gunda I. Georg, Shaomeng Wang, 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
 

Task  Prediction   Drug activity   

Compounds Peptides  Disease Cancer 

 Database Chinese traditional medicines (Largest collection)   

    

Methods Machine learning models  
o Random forest   
o Adaboost regressor  
o Gradient boosting regressor 

Learning Deep Learning models 
 

CQC 300 ns MD simulation  Docking 

Artificial Intelligence Approach to Find Lead Compounds for 
Treating Tumors 

J. Phys. Chem. Lett. 2019, 10, 4382−4400 
DOI: 10.1021/acs.jpclett.9b01426 

Jian-Qiang Chen, Hsin-Yi Chen, Wen-jie Dai, Qiu-JieLv, and Calvin Yu-Chian Chen 
AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug 

 
 

 

Part 1(b):  AI.Chem.Synth.Org 
 

 
 
Field  Biomedicine  Resources & 

high-end Tools 
 IBM’s Watson 
 AI, ML 
 Cognitive computing 

resources  
 

Applications Accurate predictions     
    Disease diagnosis, drug repurposing 
    Protein−small-molecule interactions 
    Biochemical pathways  
    Human toxicology 

 
Tools Applications 

AI, ML, cognitive computing  To fill vast knowledge gap of between cellular responses in 
in vitro and hepatotoxic risk in humans 

 To process electronic health records (EHRs) 
 To settle claims data   

 
DeepNNs  To elucidate species-specific differences between drug-

induced liver injury (DILI) in animal models and reported 
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incidents in humans 

 
Task   Prediction 

o Hepatotoxicity 
 Discipline  - Adverse drug reactions 

(ADRs) 
- Drug-induced liver 

injury (DILI) 
    
 

 
 
Mixed-learning 
method(s) 
 LDA 
 Naive Bayes  
 SVM 
  
 Classification 

trees 
 Regression  
 k-nearest 

Neighbors 
 Ensemble of 

classifiers 

Applications of DNN Deep neural nets & deep learning  
 Cheminformatics 
 Bioinformatics 
 Drug discovery 

Undirected graph recursive 
neural network (UGRNN)  
 

Predict DILI more accurately from physicochemical 
data  

Advancing Predictive Hepatotoxicity at the Intersection of 
Experimental, in Silico, and Artificial Intelligence 
Technologies 

Chem. Res. Toxicol. 31, 2018, 412−430,      
DOI: 10.1021/acs.chemrestox.8b00054 

Keith Fraser, Dylan M. Bruckner, and Jonathan S. Dordick 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
 
Task  o Prediction of reactions by algorithms  

o Automated lab equipment 
 Database  US patents 

 Reaxys reactions database. 
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Unique 
 features 

 Little human help 
 Artificial intelligence 
 Robot synthesises molecules 

Caution Aim 
o Not to eliminate the chemist 

o Providing more free time for 
chemists  
 For creativity, 

innovation.  
 

Outcome. 
planning 

For a given molecule 
o Propose synthetic routes 
o Reaction conditions  
o Evaluates best path 
 Number of steps  
 Predicted yield. 

Outcome. 
Synthesis 

 Automated synthesis  
 Robotic arm 
 Experiment sets up   

 Connecting tubes  
 Supplying different reagents 
 Flow-chemistry modules 
 Reactors   
 Membrane-based separators 

Compounds 
synthesized  

 Aspirin           91% yield  
 (S)-warfarin   78% yield  
 Five drug-related compounds  

  

Automating synthesis from planning to execution CEN.ACS.ORG, 2019. 

SAM LEMONICK 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 

Goal: Organic synthesis 
o Tools 

 Computer  
 Equipment  
 Graphical communication 
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 AI tools 

 Software 
 Heuristics  

 Chemical knowledge 
Computer-Assisted Design of Complex Organic Syntheses SCIENCE, 166, 1969, 178-192. 

E. J. Corey and W. Todd Wipke 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
Goal ! Finding better compounds faster  

 via artificial intelligence 
 Collaboration  Monsanto, drug firms 

 universities 
Sub-goal 50 distinct molecular discovery programs   

AI start-up Atomwise raises $45 million CEN.ACS.ORG, 2018. 

RYAN CROSS 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 
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Organic retro-synthesis (Basis : Logic and Heuristics) 
o SECS (Simulation and Evaluation of Chemical 

Synthesis) 
o SYNCHEM 

 Improvements: SYNCHEM2 
o IGOR (Interactive Generation of Organic 

Reactions) 
o KOSP system (Knowledge base-Oriented system 

for Synthesis Planning) 

o STOECH,-- generate automatically all the 
species by a certain transform. 

o EROS (Elaboration of Reactions for 
Organic Synthesis) 

o SYNGEN + FORWARD 
o SESAM 
o CHIRON 
o LHASA 
o CAMEO (Computer Assisted Mechanistic 

Evaluation of Organic) 
o WODCA (Workbench for the 

Organisation of Data for Chemical 
Application) 

Computer-aided organic synthesis Chem. Soc. Rev., 2005, 34, 247–266, 
DOI: 10.1039/b104620a 

Matthew H. Todd 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
Task   Organic synthesis with CHEMPUTER   

CHEMPUTER 
 Hardware, software 
 Robotic system 
 Synthesis abstraction  
 Flow chemistry 

Outcome  Leads to a road map 
 Molecules can be discovered, optimized, 

made on demand  
 Generate new discoveries entirely 

automatically 
 Can be verified, optimized, repeated 

 

  

Universal Chemical Synthesis and Discovery 
with ‘The Chemputer’ 

Trends in Chemistry, Month 2019, 
Doi.org/10.1016/j.trechm.2019.07.004 

Piotr S. Gromski, Jarosław M. Granda, and Leroy Cronin 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI 

 
 
Task  Reaction Prediction   Training 

data 
o Polar, hypervalent, radical, 

pericyclic reactions 
o Graduate level textbook  

Machine 
Learning 

Filtering models 
o Trained at the level of 

individual MOs  
 Reduces space of possible 
reactions  

Software chemoinformatics 
portalhttp://cdb.ics.uci.edu/ 

Applications Retro-synthetic search 
o Regioselectivity 

classification 
o Formability of bonds 

 

  

 
ReactionPredictor: Prediction of Complex Chemical Reactions 
at the Mechanistic Level Using Machine Learning 

J. Chem. Inf. Model., 52, 2012, 2526−2540, 
dx.doi.org/10.1021/ci3003039  

Matthew A. Kayala and Pierre Baldi 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 

http://cdb.ics.uci.edu/
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Task  Predict course of arbitrary chemical reactions  
Methods 

o Physical & chemical laws 
o Rule-based expert systems  
o Inductive machine learning  

Database Reaction Explorer  Data  1630 full multistep reactions  
 2358 distinct starting materials, 

intermediates 
 2989 productive mechanistic steps 
 6.14 million unproductive 

mechanistic steps 
 

Machine learning 
1) Atom level reactivity filters trained ones to prune 94.00% of nonproductive reactions with a 0.01% error 

rate  
2) An ensemble of ranking models trained on pairs of interacting MOs  learns a relative productivity 

function over mechanistic steps of system 
CAMEO7   o Complex set of heuristics 

for different classes 
    Predicts multistep 

reactions  

o Beppe 
o Sophia 

Multistep reactions –identification of  
o Reactive sites    
o Reactions   

EROS8 o  Uses configurable system 
composed of multistep 
reaction  

o Graph-based rule libraries 
o Extra modules to add more 

constraints   
o Heats of formation, 

physicochemical 
properties,  kinetic 
simulations 

Reaction Explorer 
system 

o Detailed graph rewrite rules for 
individual mechanistic steps  

o Not like a common practice of 
a single transformation for an 
overall reaction from starting 
materials to final products.  

o Rules described using an 
alternative physically 
motivated “electron-flow” 
Specification  allows 
visualization of the “arrow-
pushing” diagrams for each 
mechanistic step 
 

ToyChem11  
Robia12 

o Build on the EROS idea of 
physicochemical constraints 

 

  

    

Limitatios 
- Curation of large amounts of 

o Rules, exception handling  
o Expert knowledge 

- Unmanageable at larger scales 
- Adding/modifications of  new  existing 

ancetedents/consequent difficult  
- Lack generality  

- If      a particular reaction pattern not encoded  
explicitly,  
Then system will never be able to return the 
corresponding reaction. 

Rule-based reaction prediction 
o Knowledge-based 
o Human encoding of heuristics  
o Graph-rewrite 

 
 Computationally tractable  

o Patterns, and constraints 
 Quick predictions  

Learning to Predict Chemical Reactions J. Chem. Inf. Model., 512011, , 2209–2222, 
dx.doi.org/10.1021/ci200207y  

Matthew A. Kayala, Chlo e-Agathe Azencott, Jonathan H. Chen, and Pierre Baldi 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 
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Task  o Molecular design 
o Optimization 

Discipline o Cell metabolism 
o Prebiotic chemistry 

Methods 
Chemical heuristics  Path of traversing high-dimensional reactive PES 

CQC structure optimizations  3D-geometric structures  
 Eenergies of the products & intermediates  

Test Case 
study 

Heuristic-CQC computationsreproduce experimentally observed reaction products, major 
reaction pathways     Ex:  autocatalytic cycles of formose reaction i.e. self-condensation of 
formaldehyde in alkaline solution and at surfaces of various minerals  

Complex Chemical Reaction Networks from Heuristics-Aided 
Quantum Chemistry 

J. Chem. Theory Comput., 10, 2014, 
897−907, dx.doi.org/10.1021/ct401004r  

DmitrijRappoport, Cooper J. Galvin, Dmitry Yu. Zubarev, and AlánAspuru-Guzik 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
LHASA-1 (Logic and Heuristics Applied to Synthetic 
Analysis) 

- lacks stereochemical capability modules 

 Computer-assisted Analysis of Complex Synthetic 
Problems (Review) 

Q. Rev. Chem. Soc., 1971,25, 455-482 

E. J. Corey 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
Task  Conformations (off-

equilibrium) calculation 
 
Database 

 Large computational DFT database 

 Database17  
o Contains 166.4Billion molecules 

containing  up to 17 atoms of C, N, O, S, 
and halogens 

Compounds 20 Million subset: 57,462 
small organic molecules 

Future  Development of future general-purpose machine 
learned CQC potentials 

Data Descriptor: ANI-1, A data set of 20 million calculated 
off-equilibrium conformations for organic molecules 

Sci. Data 4:170193  
doi: 10.1038/sdata.2017.193 (2017). 

Justin S. Smith, OlexandrIsayev& Adrian E. Roitberg 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI 

 
 
Auto-optimized organic synthesis system 
o Unique features 

o Fully integrated 
o Versatile  
o Reconfigurable 

 

Modules 
o Heated reactor (up to 120°C) 
o Cooled reactor (to –20°C), 
o Light-emitting diode (LED)–based photochemistry 
o Photochemistry reactor 
o Packed-bed reactor (for solid supported reagents; 

catalysts, passive mixing) 
o Membrane-based liquid-liquid separator.(purification via 

extraction) 
o Bypass (for reagent addition in a minimal volume, 

mixing, unused bay) 

 
Applications  
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 Automated optimization of a specific reaction or sequence of 
reactions  

 Synthesis of a range of substrates under user-selected conditions, ex:  
Scope of transformation under optimum conditions   

 Scale-up of a selected synthesis from a previous optimum conditions   
 

Reconfigurable system for automated optimization of diverse 
chemical reactions 

Science 361, 2018, 1220–1225. 

Anne-Catherine Bédard, Andrea Adamo, Kosi C. Aroh, M. Grace Russell, Aaron A. Bedermann, Jeremy 
Torosian, Brian Yue, Klavs F. Jensen, Timothy F. Jamison 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 Forward-reaction prediction 

 IBM’s innovative approach 
 

Input: starting materials  
Method: 395 496 reactions trained with NN 
Output: Prediction of reaction under new experimentalconditions. 
Figure of merit: Correct 80 percent of the time 
 

Chematica 
 

Computer program capable of designing novel 
efficient syntheses of medicinally relevant molecules 

 

Manual organic Synthesis 
o Hand coded reaction scheme 
o Execution in lab 

o Time consuming task 
o Nonoptimized solutions 

(frequent)  

Synthesis and retrosynthesis  
 Corey and Wipke 

o Envisioned machine design using handcrafted rules 
(or reaction templates) 

- Writing rules remained a time-consuming task  
o Remedy: Deep chemical expertise 

                         Analogy between 

 Organic synthesis Solitaire game 

Pieces on the board 
in  Solitaire game  

Beginning of game  Precursor molecules 

Winning game Only one piece 
Remains  

Target 
Molecule 

 

Google’s AI program Alphazero Chess Human player 
+ Takes few minutes to learn to play 
-  Decades of  lifetime to become a master 

Alphazero 
Input: Only  rules of chess  
Learning:   Few hours of self-learning  
Outcome: 

! Adventurous and unconventional way of playing  
! Beats human masters or existing programs 

Future of chemical synthesis; drug 
discovery; medical diagnosis 

 Chemistry is more complex than chess game 
! Machine learning + Deep NN + Heuristics   Speed up 

drugs development   
Artificial Intelligence: The Future for Organic Chemistry? ACS Omega 3, 2018, 13263−13266,             

DOI: 10.1021/acsomega.8b01773 
Franck Peiretti and Jean Michel Brunel 

AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI 
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Task  Retrosynthesis  Database Reaxys36 chemistry database  

o 12.4 million single-step 
reactions 

o Two sets of extracted rules  
Methods Retrosynthetic routes discovery 

o  Monte carlotree search  
o  Symbolic AI 

NNs Deep highway network with 
bonds 

 

Heuristic Methods for chemical synthesis 
1970-2010 

o Expert chemists dictated  hand-
coded heuristics (rules) of 
chemistry to computers   

Now (This decade) 
o Strong, general planning 

algorithms 
o Symbolic representations  
o Autonomous learning   
o Rich history of chemistry 
 Accepting machine as an   

assistant in chemical 
synthesis 

Training: reaction centre 
o Trainig: reactions published 
before 2015   
o Validation & testing:   
reactions data from 2015 

onwards   
 
o Rollout policy network: 

SLP,  trained with 17,134 
rules 

o Applications 
o Agriculture 
o Healthcare  
o Material science. 
 

Planning chemical syntheses with deep neural networks and 
symbolic AI 

 N AT U R E, 555,2018, 604-618 
doi:10.1038/nature25978 

Marwin H. S. Segler, Mike Preuss & Mark P. Waller 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
 
Task  To assess protective 

groups (PGs) reactivity 
as a function 
ofreaction conditions 
(catalyst, solvent) 

 Database Reaxys database  
o Catalytic 

hydrogenation 
reactions  

Methods  Condensed 
Graph of 
Reaction (CGR) 

Data  Chemical 
transformations 
proceeding under 
ca. 271000 
reaction 
conditions 

Automatized assessment of protective group reactivity: a step 
toward big reaction data analysis 

J. Chem. Inf. Model.,2016,DOI: 
10.1021/acs.jcim.6b00319 

Arkadii I. Lin, Timur IsmailovichMadzhidov, Olga Klimchuk, Ramil I. Nugmanov, Igor S. Antipin, and 
Alexandre Varnek 

AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI 
 
 
Task  AI based 

organic 
synthesis 
 

 Database Granted US patents  
o 15 000 experimental 

reaction records   



 

AdvancementApplicationAnnouncementCNN  Artificial Intelligence (AI)                               186 
 

 Output Major product   

Prediction of Organic Reaction Outcomes Using Machine 
Learning 

ACS Cent. Sci., 2017, 
DOI: 10.1021/acscentsci.7b00064 

Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI 

 
Learning.Mach 

Pharma research 
o Physicochemical property prediction 
o Formulation prediction, 
o  ADME/tox 
o Target prediction  
o Skin permeation 

Commonman’s daily use   
 
o Internet searches  
o Voice recognition 
o Vision software 
o Phones, cameras    
o Self-driving cars.  
o Robots. Smartphones  
o Voice recognition software like SIRI  
o Read the news 
o Make a purchase on the internet via AMAZON  
o Use social network software 
o Large Companies Baidu, Google, Facebook etc. 

 Use deep learning in facial recognition algorithms 
alone 

 
Learning.Mach. 
Cheminformatics 

o SVM 
o k-Nearest Neighbors 
o Naïve Bayesian 
o Decision Trees 

Tasks o Binary classification 
o Multiple classes   

The Next Era: Deep Learning in Pharmaceutical Research Pharm Res., 2016,  
DOI 10.1007/s11095-016-2029-7 

Sean Ekins 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI 

 
Task Drug discovery 

Traditional experiments 
- Expensive  
-  time consuming 

Modern approach 
 Machine learning approaches evolved into deep learning 
 Big data 
 High computing power 

 
Machine learning 

o LDA 
o SVM 
o DT RF 
o kNN,  
o ANN 

Deep learning 
 CNN 
 DNN 
 RNN 
 DBN 

 
Big’ data 
o Volume (scale of data) 
o Velocity (growth of data) 
o Variety (diversity of sources)  
o Veracity (data uncertainty) 

Limitations. Deep learning 
- Availability of a large amount of high-quality data 
- Non availability of biomedical data generated by 

pharmaceutical companies to  academic institutesor public 
- Lack of rational interpretations of associated biological 

mechanisms  
- Black box mode of ’Deep learning models  

 
Commercial drugs and drug candidates discovered by computational methods 
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Computational Method Drug function  Drug  Year 

Docking Inhibits Checkpoint kinase 1 CCT244747 2012 

SAR/QSAR Inhibits hepatitis C RNA replication PTC725 2014 

SAR/QSAR Treats spinal muscular atrophy RG7800 2016 

Molecular modeling Inhibits phosphatidylinositol-3-kinase GDC-0941 2015 

From machine learning to deep learning: progress in machine 
intelligence for rational drug discovery 

Drug Discovery Today,  22, 2017, 
http://dx.doi.org/10.1016/j.drudis.2017.08.010 

Lu Zhang, Jianjun Tan, Dan Han and Hao Zhu 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
 
Chematica 
program 

 Autonomous design of synthetic 
pathways 

Application o Seven structurally diverse 
targets + 
One natural product 

Figure of merit o Computer generated synthetic schemes were 
successfully executed in chemical laboratory  
+ Offer significant yield 
+ Improvements cost savings 
+ Provide alternatives to patented routes  
+ Produced targets that were not synthesized previously 

Future targets  In silico colleague  
[multiprocessor machines potentially linked into larger clusters]  

o Constantly learns 
o Never forgets, 
o Will never retire 

 
 Syntheses of very complex targets  

Efficient Syntheses of Diverse, Medicinally Relevant Targets 
Planned by Computer and Executed in the Laboratory 

Chem 4, 2018, 522–532, 
doi.org/10.1016/j.chempr.2018.02.002 

Tomasz Klucznik, Barbara Mikulak-Klucznik, Michael P. McCormack, Heather Lima, Sara Szymku, 
ManishabrataBhowmick, Karol Molga, Yubai Zhou, Lindsey Rickershauser, Ewa P. Gajewska, 

Alexei Toutchkine, Piotr Dittwald, Michał P. Startek, Gregory J. Kirkovits, Rafał Roszak, 
Ariel Adamski, BiankaSieredzinska, Milan Mrksich, Sarah L.J. Trice, 

and Bartosz A. Grzybowski 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 
Goal     Insilico 

Medicine 
Task      Hunting for small molecules 

[inhibitors of discoidin domain 
receptor 1 (DDR1)] 

 
Database 

    DDR1 inhibitors 
    Kinase inhibitors 
    Nonkinase 

inhibitors 
    Patent-protected 

molecules 

Generative 
Reinforcement 
learning 

    Uses rewards (scored for molecules 
that satisfy its goals) to guide the 
algorithm 

 
    Time period:  46 days  
    The alg. proposed 30000 potential drugs  
    Computer software filtered compounds 
    Chemists selected six molecules 
    Two of them showed no activity 

http://dx.doi.org/10.1016/j.drudis.2017.08.010
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    Two other molecules with promising activity were synthesized in lab 
 One compound performed well against kinase screens 
 Its metabolic stability in mice tested 

Analogy: Alg. to find Times Square in New York City using Google Maps    
 

AI identifies drug candidate in weeks CEN.ACS.ORG, 2019. 

SAM LEMONICK 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 

Task Predictive models  
 

Reactive trajectories Prediction of  reactivity  
o Conformational descriptors alone 

 Accuracy:85% 

Methods 

o Computational Statistical mechanics— 
transition interface sampling  

 Simulates Kinetics of reaction 

o LASSO  Feature regularization 

o QM/MM TIS   Generated reactive trajectories 

o Machine learning  Selects features relevant to reactivity  

Machine Learning Identifies Chemical Characteristics That 
Promote Enzyme Catalysis 

J. Am. Chem. Soc., 141, 2019,  
4108−4118,DOI: 10.1021/jacs.8b13879 

Brian M. Bonk, James W. Weis, and Bruce Tidor 
AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 

 
 

Methods o Molecularmatched pair (MMP) analysis Discipline QSAR.special case 

Application. Bio 
o ADME  
o Bioisosterism 
o Plasma protein binding 
o Oral exposure   
o Potency  
o Intrinsic clearance  
o Metabolism  
 Herg and p450 in vitro  

o Glucuronidation clearance  
o Selectivity against off-targets  
o Mode of action 

Application.Properties 
 Aqueous solubility 
 logD, lipophilicity 

Matched Molecular Pair Analysis in Short: Algorithms, 
Applications and Limitations 

Computational and Structural Biotechnology 
Journal 15 (2017) 86–90, 

http://dx.doi.org/10.1016/j.csbj.2016.12.003 
Christian Tyrchan, Emma Evertsson 

AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 
 
 
Task  Hospital mortality Predicting Learning Deep learning models 

Database Electronic health  records from two US academic 
medical centers 

 Data  Adult patients: 216,221   
 Data unrolled   

46,864,534,945 points 
 Discharge diagnoses :1–228  

http://dx.doi.org/10.1016/j.csbj.2016.12.003
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Scalable and accurate deep learning with electronic health 
records 

Npj (Nature Partner Journals) Digital 
Medicine, 2018, 1:18 , doi:10.1038/s41746-

018-0029-1 
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt , Peter J. Liu , Xiaobing 
Liu , Jake Marcus, Mimi Sun , Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flore , Gavin E. 
Duggan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin , Justin Tansuwan, De Wang, James Wexler, 

Jimbo Wilson, Dana Ludwig , Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan 
Madabushi, Nigam H. Shah, Atul J. Butte , Michael D. Howell, Claire Cui, Greg S. Corrado  and Jeffrey Dean 

AI.Sythesis_Organic —-  AI.Sythesis —- AI.Organic —- AI. 
 
 
Deep architectures and deep learningin chemoinformatics: the 
prediction of aqueous solubility for druglikemolecules 

J Chem Inf Model. 2013;53(7):1563–75 

Lusci A, Pollastri G, Baldi P. 
 
Deep learning for druginducedliver injury J Chem Inf Model. 2015;55(10):2085–93 

Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. 
 
Deep neuralnetsas amethod for quantitative structure-activity 
relationships 

J ChemInf Model. 2015;55(2):263–74 

Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. 
 
Deep biomarkers of human aging: application of 
deep neural networks to biomarker development 

Aging (AlbanyNY) 2016;8(5):1021–33 

Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A,Kolosov A 
 
Deep architectures for protein contactmap prediction Bioinformatics. 2012;28(19):2449–57 

Di Lena P, Nagata K, Baldi P. 
 
Using deep learning toenhance cancer diagnosis and 
classification 

In: Proceeding of the30th International 
conference on machine learning. Atlanta, GA: 
JMLR: W&CP; 2013. 

Fakoor R, Ladhak F, Nazi A, Huber M. 
 
Deep convolutional neuralnetworks for annotating gene 
expression patterns in the mousebrain 

BMC Bioinf. 2015;16:147 

Zeng T, Li R, Mukkamala R, Ye J, Ji S. 
 
A deep learning framework for modeling structural features of 
RNAbinding protein targets. Nucleic 

Acids Res. 2016;44(4):e32 

Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C 
 
Modeling epoxidation of drug-like molecules with a deep 
machine learning network 

ACS Cent Sci. 2015;1(4):168–80 

Hughes TB, Miller GP, Swamidass SJ. 
 
DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:80 

Mayr A, Klambauer G, Unterthiner T, Hochreiter S. 
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Deep learning applications for predicting pharmacological 
properties of drugs and drug repurposing using transcriptomic 
data 

MolPharm. 2016;13(7):2524–30. 

Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov  A. 
 
Deep learning in label-free cell classification Sci Rep. 2016;6:21471 

Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, NiaziKR,et al. 
 
Classifying and segmenting microscopy images with deep 
multiple instance learning 

Bioinformatics. 2016;32(12):i52–9 

Kraus OZ, Ba JL, Frey BJ. 
 
Intra- and inter-fractional variation prediction of lung tumors 
using fuzzydeep learning 

IEEE JTranslEng Health Med. 
2016;4:4300112. 

Park S, Lee SJ, Weiss E, Motai Y. 
 
 

ACS.org ;sciencedirect.com : Information Source 
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