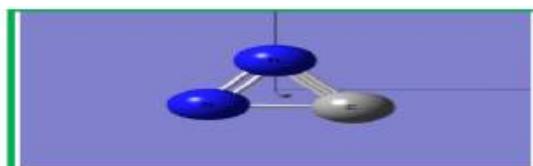


Journal of Applicable Chemistry


2020, 9 (1): 171-190
(International Peer Reviewed Journal)

New Chemistry News

New News of Chem (NNC)

ChemNewsNew (CNN)

Artificial Intelligence (AI)

Part 1(a) AI. Drug Discovery (Add)

Part 1(b) AI. Chem.Synth.Org (ACS)

Task	AI. applications
► AI-assisted pharmaceutical discovery	<ul style="list-style-type: none">Virtual screening<ul style="list-style-type: none">Structure basedLigand-basedDe novo drug designProperty prediction<ul style="list-style-type: none">PhysicochemicalPharmacokineticDrug repurposing

Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery | Chemical Rev, 2019, 119, 18, 10520-10594, DOI: 10.1021/acs.chemrev.8b00728

Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider and Shengyong Yang

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug

Applications of AI

- Organicsynthesis
- HTS in vitro
- ADMET-SXR in silico
- Iterative cycle to improve
 - Functional properties of drug candidates

Computer-calculated compounds, Researchers are deploying artificial intelligence to discover drugs

NAT U R E, 557, 2018, S 55-S57

Nic Fleming

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug

Methods	<ul style="list-style-type: none"> Deep NNs Generative + Predictive 	Learning	<ul style="list-style-type: none"> ReLeaSE (Reinforcement Learning for Structural Evolution)
Structure input	<ul style="list-style-type: none"> SMILES strings 	Model interpretation	<ul style="list-style-type: none"> Recurrent NNs Adversarial autoencoder
			<p>Alg.</p> <ul style="list-style-type: none"> First phase: Supervised training of generative and predictive models separately Second phase: ReLeaSE training of both models jointly <p>Generation of new chemical structures (feasible SMILES strings) Biased towards desired physical/biological properties</p> <p>Predictive models Forecast of desired properties of generated novo-compounds</p>
<p>Fourth industrial revolution</p> <ul style="list-style-type: none"> Combination of big data + AI (Knowledge + Robots) <ul style="list-style-type: none"> World economic forum opines a transformation in scientific discovery efforts in future 			
<p>Deep reinforcement learning for de novo drug design</p>		<p>Sci. Adv. 2018;4: eaap7885, DOI: 10.1126/sciadv.aap7885</p>	
<p>Mariya Popova, OlexandrIsayev, Alexander Tropsha</p> <p>AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug</p>			

Methods	<ul style="list-style-type: none"> SVM Fully connected NNs Convolutional NNs Recurrent NNs 	Learning	<ul style="list-style-type: none"> Deep learning
Software	<ul style="list-style-type: none"> Tensorflow Caffe Pytorch Keras Theano 	Hard-ware	<ul style="list-style-type: none"> GPU TPU
Feature	Advantage	Feature	Advantage
Rectified linear unit	Avoids vanishing gradients	<ul style="list-style-type: none"> Convolutional layers Pooling layers 	Large numbers of input variables
<ul style="list-style-type: none"> Dropout Dropconnect 	Surmounts overfitting problem		
<p>The rise of deep learning in drug discovery</p>		<p>Drug Discovery Today, 23, 2018, doi.org/10.1016/j.drudis.2018.01.039</p>	
<p>Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona and Thomas Blaschke</p> <p>AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug</p>			

Methods.Chem	<ul style="list-style-type: none"> Chemical graph theory Chemical fingerprints 	Methods.math	<ul style="list-style-type: none"> Deep NNs Deep Learning SVM
---------------------	--	---------------------	--

			<ul style="list-style-type: none"> ○ Random forest ○ Naïve Bayes
Machine learning in chemo informatics and drug discovery			Drug Discovery Today, 2018, doi.org/10.1016/j.drudis.2018.05.010
Yu-Chen Lo, Stefano E. Rensi, Wen Torn and Russ B. Altman			

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug

Goal	<ul style="list-style-type: none"> ○ Design of <ul style="list-style-type: none"> ■ Automated three-to-five-step synthesis ○ Prediction <ul style="list-style-type: none"> Property Activity 	Discipline	Automated chemistry Convergence of artificial intelligence + chemistry → improved drug discovery
Methods	<ul style="list-style-type: none"> ○ Recurrent neural networks ○ SMILES representations (ChEMBL database) ○ Variational autoencoders ○ Multitask deep NNs 	Learning	<ul style="list-style-type: none"> ○ One-shot learning ○ Transfer learning

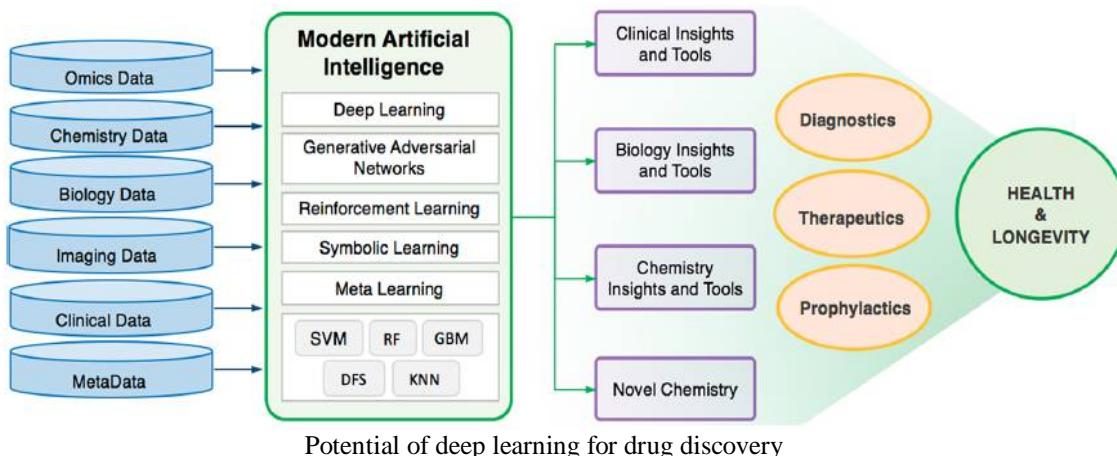
Evolution of AI assisted automatic synthesis

Level	<ul style="list-style-type: none"> ○ Design 	<ul style="list-style-type: none"> ○ Synthesis
0	<ul style="list-style-type: none"> ○ Manual 	<ul style="list-style-type: none"> ○ Manual
1	<ul style="list-style-type: none"> ○ Input from computational analysis 	<ul style="list-style-type: none"> ○ Manual
2	<ul style="list-style-type: none"> ○ Manual + ○ Occasional input from AI design 	<ul style="list-style-type: none"> ○ Manual
3	AI design	Partial automated synthesis + Significant input from human expert
4	AI design	Automated synthesis + occasional input from human expert
5	AI design	Automated synthesis + No (or)minimal input from human expert

The convergence of artificial intelligence and chemistry for improved drug discovery

FutureMed. Chem., 2018.

Clive P Green Ola Engkvist & Garry Paireaudeau


AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug

Methods	Graph neural network		Learning	Deep learning
Task	Predicting drug–target interaction		Training	DUD-E set 72 proteins
			Testing	25 proteins
	DUD-E active	DUD-E inactive	PDBbind positive	PDBbind negative
training	15864	973260	1598	9511
test	5841	364149	496	2735

Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation

J. Chem. Inf. Model. 2019, 59, 3981–3988,
DOI: 10.1021/acs.jcim.9b00387

Task	Multidrug resistant tuberculosis patients (230)	Prediction	Compound representation	CNNbased autoencoders >> [voxel-based code; Gaussian blur of atom]
Methods	<ul style="list-style-type: none"> ○ Convolutional NN + ○ Support vector machines ○ Deep generative models 		DNN performance	Image, Voice and Text Recognition, Autonomous Driving, >> Human accuracy

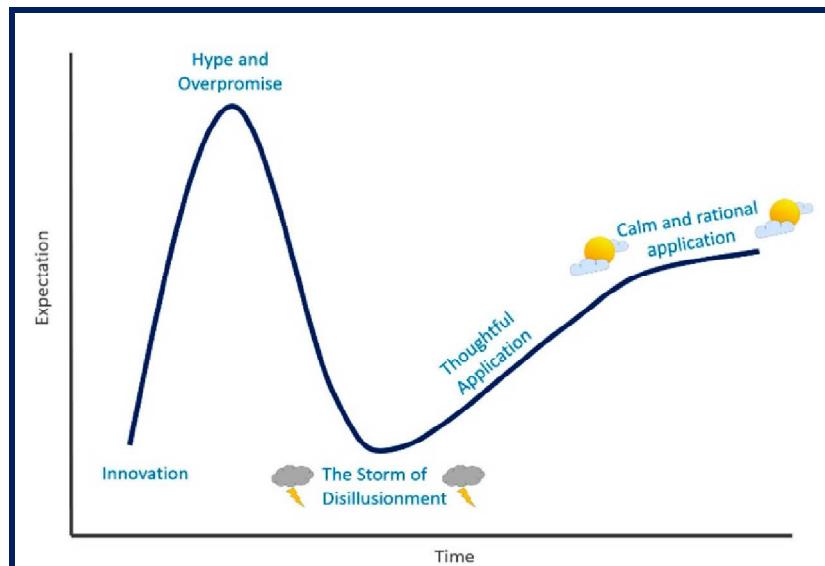
Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry

Mol. Pharmaceutics 2018, 15, 4311–4313, DOI: 10.1021/acs.molpharmaceut.8b00930

Alex Zhavoronkov

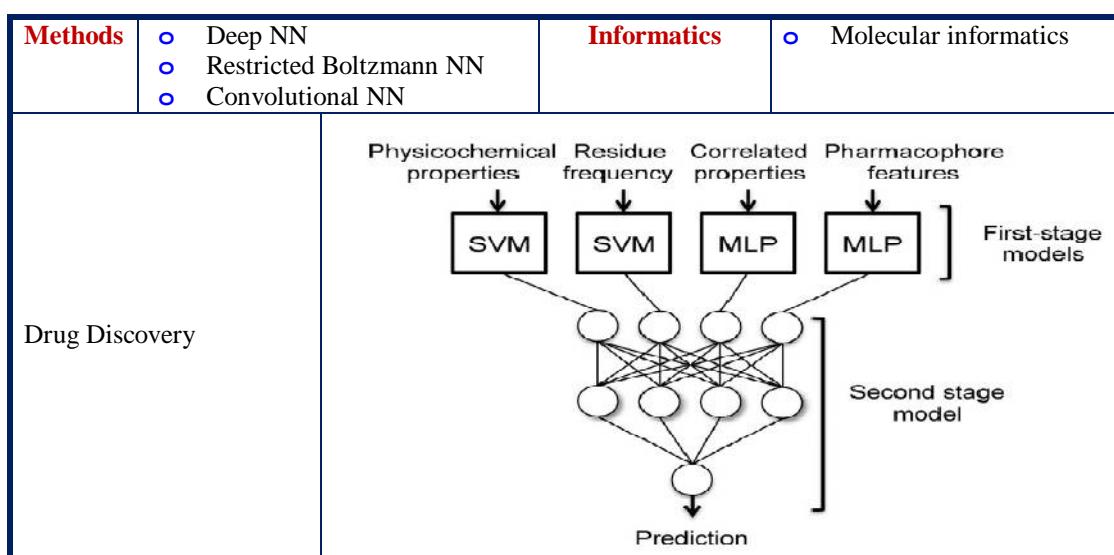
CQC	<ul style="list-style-type: none"> ○ To accelerate development of environmental catalysts 	Applications	<ul style="list-style-type: none"> ○ Captures greenhouse gases (like carbon dioxide)
BASF taps Citrine for catalyst research		CEN.ACS.ORG, 2018	

RICK MULLIN


Compounds	PDB-derived ASTRAL dataset4	Molecule representation	Sequence-derived 1D-features
Discipline	AI assisted <ul style="list-style-type: none"> ○ Cardiac contractility intervention ○ Therapeutic disruption of specific protein associations 	Software	<ul style="list-style-type: none"> ○ Python script in Tensor Flow ○ Run from PyMol 2.3 platform, Schrödinger
Methods	<ul style="list-style-type: none"> ○ Deep learning ○ 2-Hidden Layer NN 		
Artificial Intelligence Steering Molecular Therapy in the Absence of Information on Target Structure and Regulation		J. Chem. Inf. Model., 2019, DOI: 10.1021/acs.jcim.9b00651	

Ariel Fernández

Computational models	For prediction <ul style="list-style-type: none"> ✚ Adjunct ✚ Compliment ✚ Supplement ❗ Not a panacea 	AI	Ultimate goal in drug design <ul style="list-style-type: none"> ✓ Ability to develop hypotheses ✓ Irrational suggestions based on creativity, insight ✓ Automation, adaptability,
-----------------------------	---	-----------	--


	<ul style="list-style-type: none"> ○ If conflicting, to search for correct paradigm ○ If redundant, no new information 		
A Novel In Silico Approach to Drug Discovery via Computational Intelligence		J. Chem. Inf. Model. 2009, 49, 1105–1121	
David Hecht and Gary B. Fogel			

CI.Drug_Discovery — CI.Discovery_Drug — CI.Discovery — CI.Drug

Artificial Intelligence in Drug Design-The Storm Before the Calm?	ACS Medicinal Chemistry Letters, 2018, 9, 12, 1150-1152, DOI: 10.1021/acsmedchemlett.8b00500
Allan M. Jordan	

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug

Deep Learning in Drug Discovery	Mol. Inf. 2016, 35, 3 – 14, DOI: 10.1002/minf.201501008
Erik Gawehn, Jan A. Hiss, and Gisbert Schneider	

AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug

Database	ChEMBL version 24.1	4276 assays 0.5 million compounds
-----------------	---------------------	--------------------------------------

			1.4 million pIC50s
	NVS data		<ul style="list-style-type: none"> 11 805 assays 1.8 million compounds 18.3 million pIC50s
Methods	<ul style="list-style-type: none"> Profile-quantitative structure–activity relationship (pQSAR) 	Models	8558 successful models
Testing	<ul style="list-style-type: none"> pQSAR models updated every month Predictions 	Applications	<ul style="list-style-type: none"> Virtual screening Selectivity design Toxicity promiscuity prediction Mechanism-of-action prediction
Learning	Transfer learning NVS & ChEMBL		
Alg	<p>Step one: Descriptors: Morgan 2 substructural fingerprints;</p> <p>Models: random forest regression</p> <p>Step two: PLS model</p>		

All-Assay-Max2 pQSAR: Activity Predictions as Accurate as Four-Concentration IC50s for 8558 Novartis Assays

J. Chem. Inf. Model., 2019,
DOI: 10.1021/acs.jcim.9b00375

Eric J. Martin, Valery R. Polyakov, Xiang-Wei Zhu, Li Tian, Prasenjit Mukherjee, and Xin Liu

[AI.Drug_Discovery](#) — [AI.Discovery_Drug](#) — [AI.Discovery](#) — [AI.Drug](#)

Task	Computational	Drug discovery
Methods	<ul style="list-style-type: none"> Machine learning (ML) Artificial intelligence (AI) 	
Data	Big data	
Domain	<ul style="list-style-type: none"> Fourth paradigm of science Fourth industrial revolution Big data — AI 	

Transforming Computational Drug Discovery with Machine Learning and AI

ACS Med. Chem. Let. 2018, 9, 11, 1065-1069,
DOI: 10.1021/acsmedchemlett.8b00437

Justin S. Smith, Adrian E. Roitberg, and Olexandr Isayev

[AI.Drug_Discovery](#) — [AI.Discovery_Drug](#) — [AI.Discovery](#) — [AI.Drug](#)

AI	To design molecules with balance <ul style="list-style-type: none"> Potency, selectivity pharmacokinetics 	Pharma company	GlaxoSmithKline
-----------	--	-----------------------	-----------------

GSK in computing pact with Exscientia

C&EN Global Enterprise, 2017, 95, 28, 15,
DOI: 10.1021/cen-09528-buscon12

LISA JARVIS

[AI.Drug_Discovery](#) — [AI.Discovery_Drug](#) — [AI.Discovery](#) — [AI.Drug](#)

AI tools	<ul style="list-style-type: none"> Property prediction Materials synthesis 	Machine Learning	<ul style="list-style-type: none"> Designing synthesizable molecules with desired range of properties Pharmaceutical Discovery
Artificial intelligence to spread in drug research		C&EN Global Enterprise 2019, 97, 2, 38-38	
Rick Mullin			

[AI.Drug_Discovery](#) — [AI.Discovery_Drug](#) — [AI.Discovery](#) — [AI.Drug](#)

Editorial : Special issue on “Artificial Intelligence in DrugDiscovery” in Journal of Medicinal Chemistry	Emphasis: <ul style="list-style-type: none"> ▪ Impact of AI on drug discovery at present ▪ Not how they might add value in the future ▪ High-quality research yielding “negative” results Ex: studies showing no advantages of complex computational methods over simpler approaches in specific applications.
The Future Is Now: Artificial Intelligence in Drug Discovery	J. Medicinal Chemistry, 2019, 62, 11, 5249, DOI: 10.1021/acs.jmedchem.9b00805
JürgenBajorath, Steven Kearnes, W. Patrick Walters, Gunda I. Georg, Shaomeng Wang, AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug	

Task	Prediction	Drug activity		
Compounds	Peptides	Disease	Cancer	
Database	Chinese traditional medicines (Largest collection)			
Methods	Machine learning models <ul style="list-style-type: none"> ○ Random forest ○ Adaboost regressor ○ Gradient boosting regressor 	Learning	Deep Learning models	
CQC	300 ns MD simulation		Docking	

Artificial Intelligence Approach to Find Lead Compounds for Treating Tumors	J. Phys. Chem. Lett. 2019, 10, 4382–4400 DOI: 10.1021/acs.jpclett.9b01426
Jian-Qiang Chen, Hsin-Yi Chen, Wen-jie Dai, Qiu-Jie Lv, and Calvin Yu-Chian Chen AI.Drug_Discovery — AI.Discovery_Drug — AI.Discovery — AI.Drug	

Part 1(b): AI.Chem.Synth.Org

Field	Biomedicine	Resources & high-end Tools	<ul style="list-style-type: none"> ▪ IBM’s Watson ▪ AI, ML ▪ Cognitive computing resources 	
Applications		Accurate predictions <ul style="list-style-type: none"> ▶ Disease diagnosis, drug repurposing ▶ Protein–small-molecule interactions ▶ Biochemical pathways ▶ Human toxicology 		
Tools		Applications		
AI, ML, cognitive computing	<ul style="list-style-type: none"> ▪ To fill vast knowledge gap of between cellular responses in <i>in vitro</i> and hepatotoxic risk in humans ▪ To process electronic health records (EHRs) ▪ To settle claims data 			
DeepNNs	To elucidate species-specific differences between drug-induced liver injury (DILI) in animal models and reported			

	incidents in humans
--	---------------------

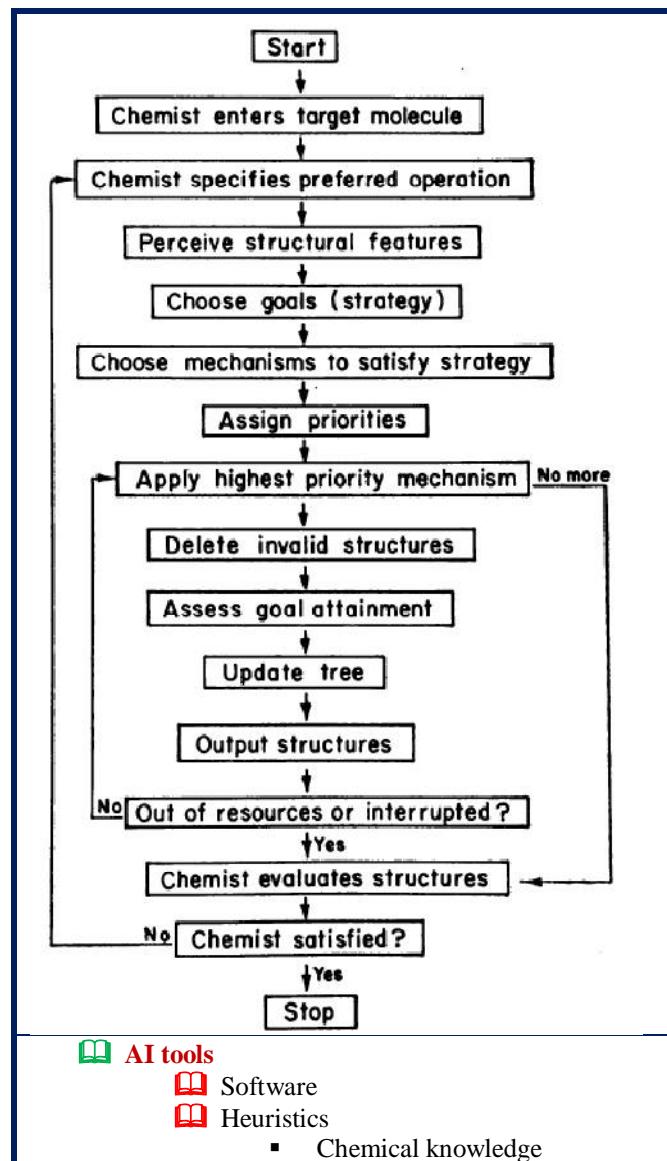
Task	Prediction o Hepatotoxicity	Discipline	- Adverse drug reactions (ADRs) - Drug-induced liver injury (DILI)
<p>The diagram illustrates the workflow for predicting hepatotoxicity. On the left, under 'Models', three paths are shown: 'In vitro' (represented by a microscope and a petri dish), 'In vivo' (represented by two mice), and 'In silico' (represented by a computer monitor showing a 2D plot of 'Feature 1' vs 'Feature 2' with data points for 'Class A' and 'Class B'). Arrows from these three paths converge on the right, under 'Predictions', which shows a detailed anatomical illustration of a liver.</p>			
Mixed-learning method(s) <ul style="list-style-type: none"> ■ LDA ■ Naive Bayes ■ SVM ■ ■ Classification trees ■ Regression ■ k-nearest Neighbors ■ Ensemble of classifiers 	Applications of DNN Undirected graph recursive neural network (UGRNN)	Deep neural nets & deep learning <ul style="list-style-type: none"> ■ Cheminformatics ■ Bioinformatics ■ Drug discovery 	Predict DILI more accurately from physicochemical data

Advancing Predictive Hepatotoxicity at the Intersection of Experimental, in Silico, and Artificial Intelligence Technologies

Chem. Res. Toxicol. 31, 2018, 412–430,
DOI: 10.1021/acs.chemrestox.8b00054

Keith Fraser, Dylan M. Bruckner, and Jonathan S. Dordick

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.


Task	<ul style="list-style-type: none"> o Prediction of reactions by algorithms o Automated lab equipment 	Database	<ul style="list-style-type: none"> ■ US patents ■ Reaxys reactions database.
-------------	--	-----------------	--

Unique features	Little human help Artificial intelligence Robot synthesises molecules	Caution	Aim
Outcome. planning	For a given molecule <ul style="list-style-type: none"> ○ Propose synthetic routes ○ Reaction conditions ○ Evaluates best path <ul style="list-style-type: none"> ■ Number of steps ■ Predicted yield. 	Outcome. Synthesis	<ul style="list-style-type: none"> ■ Automated synthesis ■ Robotic arm ■ Experiment sets up <ul style="list-style-type: none"> ■ Connecting tubes ■ Supplying different reagents ■ Flow-chemistry modules ■ Reactors ■ Membrane-based separators
Compounds synthesized	<ul style="list-style-type: none"> ■ Aspirin 91% yield ■ (S)-warfarin 78% yield ■ Five drug-related compounds 		
Automating synthesis from planning to execution		CEN.ACS.ORG, 2019.	
SAM LEMONICK			

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.

Goal: Organic synthesis
<ul style="list-style-type: none"> ○ Tools <ul style="list-style-type: none"> ■ Computer ■ Equipment ■ Graphical communication

Computer-Assisted Design of Complex Organic Syntheses

SCIENCE, 166, 1969, 178-192.

E. J. Corey and W. Todd Wipke

AI.Synthesis_Organic --- AI.Synthesis --- AI.Organic --- AI.

Goal	! Finding better compounds faster via artificial intelligence	Collaboration	✓ Monsanto, drug firms ✓ universities
Sub-goal	50 distinct molecular discovery programs		
AI start-up Atomwise raises \$45 million		CEN.ACS.ORG, 2018.	
RYAN CROSS			

AI.Synthesis_Organic --- AI.Synthesis --- AI.Organic --- AI.

Organic retro-synthesis (Basis : Logic and Heuristics) <ul style="list-style-type: none"> ○ SECS (Simulation and Evaluation of Chemical Synthesis) ○ SYNCHEM <ul style="list-style-type: none"> ■ Improvements: SYNCHEM2 ○ IGOR (Interactive Generation of Organic Reactions) ○ KOSP system (Knowledge base-Oriented system for Synthesis Planning) 	<ul style="list-style-type: none"> ○ STOECH,-- generate automatically all the species by a certain transform. ○ EROS (Elaboration of Reactions for Organic Synthesis) ○ SYNCHEM + FORWARD ○ SESAM ○ CHIRON ○ LHASA ○ CAMEO (Computer Assisted Mechanistic Evaluation of Organic) ○ WODCA (Workbench for the Organisation of Data for Chemical Application)
Computer-aided organic synthesis	Chem. Soc. Rev., 2005, 34, 247–266, DOI: 10.1039/b104620a
Matthew H. Todd	

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

Task	Organic synthesis with CHEMPUTER	CHEMPUTER	Hardware, software Robotic system Synthesis abstraction Flow chemistry
Outcome	Leads to a road map <ul style="list-style-type: none"> ✓ Molecules can be discovered, optimized, made on demand Generate new discoveries entirely automatically <ul style="list-style-type: none"> ✓ Can be verified, optimized, repeated 		
Universal Chemical Synthesis and Discovery with 'The Chemputer'			Trends in Chemistry, Month 2019, Doi.org/10.1016/j.trechm.2019.07.004
Piotr S. Gromski, Jarosław M. Granda, and Leroy Cronin			

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

Task	Reaction Prediction	Training data	<ul style="list-style-type: none"> ○ Polar, hypervalent, radical, pericyclic reactions <ul style="list-style-type: none"> ○ Graduate level textbook
Machine Learning	Filtering models <ul style="list-style-type: none"> ○ Trained at the level of individual MOs → Reduces space of possible reactions 	Software	chemoinformatics portal http://cdb.ics.uci.edu/
Applications	Retro-synthetic search <ul style="list-style-type: none"> ○ Regioselectivity classification ○ Formability of bonds 		

ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning

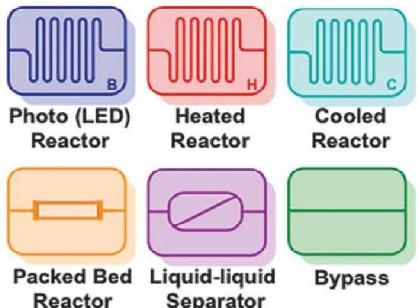
J. Chem. Inf. Model., 52, 2012, 2526–2540,
[dx.doi.org/10.1021/ci3003039](https://doi.org/10.1021/ci3003039)

Matthew A. Kayala and Pierre Baldi

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

Task	Predict course of arbitrary chemical reactions	Methods	<ul style="list-style-type: none"> ○ Physical & chemical laws ○ Rule-based expert systems ○ Inductive machine learning
Database	Reaction Explorer	Data	<ul style="list-style-type: none"> ■ 1630 full multistep reactions ■ 2358 distinct starting materials, intermediates ■ 2989 productive mechanistic steps ■ 6.14 million unproductive mechanistic steps
Machine learning <ol style="list-style-type: none"> 1) Atom level reactivity filters trained ones to prune 94.00% of nonproductive reactions with a 0.01% error rate 2) An ensemble of ranking models trained on pairs of interacting MOs → learns a relative productivity function over mechanistic steps of system 			
CAMEO7	<ul style="list-style-type: none"> ○ Complex set of heuristics for different classes <ul style="list-style-type: none"> ▶ Predicts multistep reactions 	<ul style="list-style-type: none"> ○ Beppe ○ Sophia 	Multistep reactions –identification of <ul style="list-style-type: none"> ○ Reactive sites ○ Reactions
EROS8	<ul style="list-style-type: none"> ○ Uses configurable system composed of multistep reaction ○ Graph-based rule libraries ○ Extra modules to add more constraints <ul style="list-style-type: none"> ○ Heats of formation, physicochemical properties, kinetic simulations 	Reaction Explorer system	<ul style="list-style-type: none"> ○ Detailed graph rewrite rules for individual mechanistic steps ○ Not like a common practice of a single transformation for an overall reaction from starting materials to final products. ○ Rules described using an alternative physically motivated “electron-flow” Specification → allows visualization of the “arrow-pushing” diagrams for each mechanistic step
ToyChem11 Robia12	<ul style="list-style-type: none"> ○ Build on the EROS idea of physicochemical constraints 		
Limitations <ul style="list-style-type: none"> - Curation of large amounts of <ul style="list-style-type: none"> ○ Rules, exception handling ○ Expert knowledge - Unmanageable at larger scales - Adding/modifications of new existing antecedents/consequent difficult - Lack generality <ul style="list-style-type: none"> - If a particular reaction pattern not encoded explicitly, Then system will never be able to return the corresponding reaction. 		Rule-based reaction prediction <ul style="list-style-type: none"> ○ Knowledge-based ○ Human encoding of heuristics ○ Graph-rewrite ■ Computationally tractable <ul style="list-style-type: none"> ○ Patterns, and constraints ■ Quick predictions 	

Task	<ul style="list-style-type: none"> ○ Molecular design ○ Optimization 	Discipline	<ul style="list-style-type: none"> ○ Cell metabolism ○ Prebiotic chemistry
Methods	Chemical heuristics	→ Path of traversing high-dimensional reactive PES	
	CQC structure optimizations	→ 3D-geometric structures → Energies of the products & intermediates	
Test Case study	Heuristic-CQC computations reproduce experimentally observed reaction products, major reaction pathways Ex: autocatalytic cycles of formose reaction i.e. self-condensation of formaldehyde in alkaline solution and at surfaces of various minerals		
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry		J. Chem. Theory Comput., 10, 2014, 897–907, dx.doi.org/10.1021/ct401004r	
Dmitrij Rappoport, Cooper J. Galvin, Dmitry Yu. Zubarev, and Alán Aspuru-Guzik			


AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

LHASA-1 (Logic and Heuristics Applied to Synthetic Analysis)	<ul style="list-style-type: none"> - lacks stereochemical capability modules
Computer-assisted Analysis of Complex Synthetic Problems (Review)	Q. Rev. Chem. Soc., 1971, 25, 455-482
	E. J. Corey

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

Task	Conformations (off-equilibrium) calculation	Database	Large computational DFT database Database17 <ul style="list-style-type: none"> ○ Contains 166.4Billion molecules containing up to 17 atoms of C, N, O, S, and halogens
Compounds	20 Million subset: 57,462 small organic molecules	Future	Development of future general-purpose machine learned CQC potentials
Data Descriptor: ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules		Sci. Data 4:170193 doi: 10.1038/sdata.2017.193 (2017).	
Justin S. Smith, Olexandr Isayev & Adrian E. Roitberg			

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

Auto-optimized organic synthesis system	Modules
<ul style="list-style-type: none"> ○ Unique features <ul style="list-style-type: none"> ○ Fully integrated ○ Versatile ○ Reconfigurable 	<ul style="list-style-type: none"> ○ Heated reactor (up to 120°C) ○ Cooled reactor (to -20°C), ○ Light-emitting diode (LED)-based photochemistry ○ Photochemistry reactor ○ Packed-bed reactor (for solid supported reagents; catalysts, passive mixing) ○ Membrane-based liquid-liquid separator.(purification via extraction) ○ Bypass (for reagent addition in a minimal volume, mixing, unused bay)
Applications	

	<ul style="list-style-type: none"> Automated optimization of a specific reaction or sequence of reactions Synthesis of a range of substrates under user-selected conditions, ex: Scope of transformation under optimum conditions Scale-up of a selected synthesis from a previous optimum conditions 	
Reconfigurable system for automated optimization of diverse chemical reactions		Science 361, 2018, 1220–1225.
Anne-Catherine Bédard, Andrea Adamo, Kosi C. Aroh, M. Grace Russell, Aaron A. Bedermann, Jeremy Torosian, Brian Yue, Klavs F. Jensen, Timothy F. Jamison		
AI.Synthesis_Organic —— AI.Synthesis —— AI.Organic —— AI.		
<ul style="list-style-type: none"> Forward-reaction prediction IBM's innovative approach 	<p>Input: starting materials Method: 395 496 reactions trained with NN Output: Prediction of reaction under new experimental conditions. Figure of merit: Correct 80 percent of the time</p>	
Chematica	Computer program capable of designing novel efficient syntheses of medicinally relevant molecules	
<p>Manual organic Synthesis</p> <ul style="list-style-type: none"> Hand coded reaction scheme Execution in lab <ul style="list-style-type: none"> Time consuming task Nonoptimized solutions (frequent) 	<p>Synthesis and retrosynthesis</p> <ul style="list-style-type: none"> Corey and Wipke <ul style="list-style-type: none"> Envisioned machine design using handcrafted rules (or reaction templates) Writing rules remained a time-consuming task <ul style="list-style-type: none"> Remedy: Deep chemical expertise 	
Analogy between		
	Organic synthesis	Solitaire game
Pieces on the board in Solitaire game	Beginning of game	Precursor molecules
Winning game	Only one piece Remains	Target Molecule
Google's AI program Alphazero	<p>Chess Human player</p> <ul style="list-style-type: none"> + Takes few minutes to learn to play - Decades of lifetime to become a master <p>Alphazero</p> <p>Input: Only rules of chess Learning: Few hours of self-learning Outcome:</p> <ul style="list-style-type: none"> ! Adventurous and unconventional way of playing ! Beats human masters or existing programs 	
Future of chemical synthesis; drug discovery; medical diagnosis	<ul style="list-style-type: none"> ✓ Chemistry is more complex than chess game ! Machine learning + Deep NN + Heuristics → Speed up drugs development 	
Artificial Intelligence: The Future for Organic Chemistry?		ACS Omega 3, 2018, 13263–13266, DOI: 10.1021/acsomega.8b01773
Franck Peiretti and Jean Michel Brunel		
AI.Synthesis_Organic —— AI.Synthesis —— AI.Organic —— AI		

Task	Retrosynthesis	Database	Reaxys36 chemistry database <ul style="list-style-type: none"> ○ 12.4 million single-step reactions ○ Two sets of extracted rules 								
Methods	Retrosynthetic routes discovery <ul style="list-style-type: none"> ○ Monte carlotree search ○ Symbolic AI 	NNs	Deep highway network with bonds								
Heuristic Methods for chemical synthesis											
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 5px;">1970-2010</th> <th style="text-align: left; padding: 5px;">Now (This decade)</th> <th style="text-align: left; padding: 5px;">Training: reaction centre</th> <th style="text-align: left; padding: 5px;">Applications</th> </tr> </thead> <tbody> <tr> <td style="padding: 5px;"> <ul style="list-style-type: none"> ○ Expert chemists dictated hand-coded heuristics (rules) of chemistry to computers </td><td style="padding: 5px;"> <ul style="list-style-type: none"> ○ Strong, general planning algorithms ○ Symbolic representations ○ Autonomous learning ○ Rich history of chemistry <p style="text-align: right; margin-top: -10px;">→ Accepting machine as an assistant in chemical synthesis</p> </td><td style="padding: 5px;"> <ul style="list-style-type: none"> ○ Trainig: reactions published before 2015 ○ Validation & testing: reactions data from 2015 onwards </td><td style="padding: 5px;"> <ul style="list-style-type: none"> ○ Agriculture ○ Healthcare ○ Material science. </td></tr> </tbody> </table>				1970-2010	Now (This decade)	Training: reaction centre	Applications	<ul style="list-style-type: none"> ○ Expert chemists dictated hand-coded heuristics (rules) of chemistry to computers 	<ul style="list-style-type: none"> ○ Strong, general planning algorithms ○ Symbolic representations ○ Autonomous learning ○ Rich history of chemistry <p style="text-align: right; margin-top: -10px;">→ Accepting machine as an assistant in chemical synthesis</p>	<ul style="list-style-type: none"> ○ Trainig: reactions published before 2015 ○ Validation & testing: reactions data from 2015 onwards 	<ul style="list-style-type: none"> ○ Agriculture ○ Healthcare ○ Material science.
1970-2010	Now (This decade)	Training: reaction centre	Applications								
<ul style="list-style-type: none"> ○ Expert chemists dictated hand-coded heuristics (rules) of chemistry to computers 	<ul style="list-style-type: none"> ○ Strong, general planning algorithms ○ Symbolic representations ○ Autonomous learning ○ Rich history of chemistry <p style="text-align: right; margin-top: -10px;">→ Accepting machine as an assistant in chemical synthesis</p>	<ul style="list-style-type: none"> ○ Trainig: reactions published before 2015 ○ Validation & testing: reactions data from 2015 onwards 	<ul style="list-style-type: none"> ○ Agriculture ○ Healthcare ○ Material science. 								
Planning chemical syntheses with deep neural networks and symbolic AI	N AT U R E, 555,2018, 604-618 doi:10.1038/nature25978										
Marwin H. S. Segler, Mike Preuss & Mark P. Waller AI.Synthesis_Organic —— AI.Synthesis —— AI.Organic —— AI											

Task	To assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent)	Database	Reaxys database <ul style="list-style-type: none"> ○ Catalytic hydrogenation reactions
Methods	Condensed Graph of Reaction (CGR)	Data	<ul style="list-style-type: none"> ■ Chemical transformations proceeding under ca. 271000 reaction conditions
Automatized assessment of protective group reactivity: a step toward big reaction data analysis		J. Chem. Inf. Model.,2016,DOI: 10.1021/acs.jcim.6b00319	
Arkadii I. Lin, Timur Ismailovich Madzhidov, Olga Klimchuk, Ramil I. Nugmanov, Igor S. Antipin, and Alexandre Varnek			

AI.Synthesis_Organic —— AI.Synthesis —— AI.Organic —— AI

Task	AI based organic synthesis	Database	Granted US patents <ul style="list-style-type: none"> ○ 15 000 experimental reaction records
-------------	----------------------------	-----------------	---

Output	Major product	
Prediction of Organic Reaction Outcomes Using Machine Learning		ACS Cent. Sci., 2017, DOI: 10.1021/acscentsci.7b00064
Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen		
AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI		

Learning.Mach	
Pharma research <ul style="list-style-type: none"> ○ Physicochemical property prediction ○ Formulation prediction, ○ ADME/tox ○ Target prediction ○ Skin permeation 	Commonman's daily use <ul style="list-style-type: none"> ○ Internet searches ○ Voice recognition ○ Vision software ○ Phones, cameras ○ Self-driving cars. ○ Robots, Smartphones ○ Voice recognition software like SIRI ○ Read the news ○ Make a purchase on the internet via AMAZON ○ Use social network software ○ Large Companies Baidu, Google, Facebook etc. Use deep learning in facial recognition algorithms alone

Learning.Mach. Cheminformatics	<ul style="list-style-type: none"> ○ SVM ○ k-Nearest Neighbors ○ Naïve Bayesian ○ Decision Trees 	Tasks	<ul style="list-style-type: none"> ○ Binary classification ○ Multiple classes
The Next Era: Deep Learning in Pharmaceutical Research		Pharm Res., 2016, DOI 10.1007/s11095-016-2029-7	
Sean Ekins			

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI

Task	Drug discovery
Traditional experiments <ul style="list-style-type: none"> - Expensive - time consuming 	Modern approach <ul style="list-style-type: none"> ■ Machine learning approaches evolved into deep learning ■ Big data ■ High computing power
Machine learning <ul style="list-style-type: none"> ○ LDA ○ SVM ○ DT RF ○ kNN, ○ ANN 	Deep learning <ul style="list-style-type: none"> ■ CNN ■ DNN ■ RNN ■ DBN
Big' data <ul style="list-style-type: none"> ○ Volume (scale of data) ○ Velocity (growth of data) ○ Variety (diversity of sources) ○ Veracity (data uncertainty) 	Limitations. Deep learning <ul style="list-style-type: none"> - Availability of a large amount of high-quality data - Non availability of biomedical data generated by pharmaceutical companies to academic institutes or public - Lack of rational interpretations of associated biological mechanisms - Black box mode of 'Deep learning models

Commercial drugs and drug candidates discovered by computational methods

Computational Method	Drug function	Drug	Year
Docking	Inhibits Checkpoint kinase 1	CCT244747	2012
SAR/QSAR	Inhibits hepatitis C RNA replication	PTC725	2014
SAR/QSAR	Treats spinal muscular atrophy	RG7800	2016
Molecular modeling	Inhibits phosphatidylinositol-3-kinase	GDC-0941	2015

From machine learning to deep learning: progress in machine intelligence for rational drug discovery

Drug Discovery Today, 22, 2017,
<http://dx.doi.org/10.1016/j.drudis.2017.08.010>

Lu Zhang, Jianjun Tan, Dan Han and Hao Zhu

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.

Chematica program	<ul style="list-style-type: none"> ▪ Autonomous design of synthetic pathways 	Application	<ul style="list-style-type: none"> ○ Seven structurally diverse targets + One natural product
Figure of merit	<ul style="list-style-type: none"> ○ Computer generated synthetic schemes were successfully executed in chemical laboratory <ul style="list-style-type: none"> ✚ Offer significant yield ✚ Improvements cost savings ✚ Provide alternatives to patented routes ✚ Produced targets that were not synthesized previously 		
Future targets	<ul style="list-style-type: none"> ▪ In silico colleague [multiprocessor machines potentially linked into larger clusters] <ul style="list-style-type: none"> ○ Constantly learns ○ Never forgets, ○ Will never retire ▪ Syntheses of very complex targets 		

Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory

Chem 4, 2018, 522–532,
doi.org/10.1016/j.chempr.2018.02.002

Tomasz Klucznik, Barbara Mikulak-Klucznik, Michael P. McCormack, Heather Lima, Sara Szymku, Manishabrat Bhowmick, Karol Molga, Yubai Zhou, Lindsey Rickershauser, Ewa P. Gajewska, Alexei Toutchkine, Piotr Dittwald, Michał P. Startek, Gregory J. Kirkovits, Rafał Roszak, Ariel Adamski, Bianka Sieredzinska, Milan Mrksich, Sarah L.J. Trice, and Bartosz A. Grzybowski

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.

Goal	▶ Insilico Medicine	Task	▶ Hunting for small molecules [inhibitors of discoidin domain receptor 1 (DDR1)]
Database	<ul style="list-style-type: none"> ▶ DDR1 inhibitors ▶ Kinase inhibitors ▶ Nonkinase inhibitors ▶ Patent-protected molecules 	Generative Reinforcement learning	▶ Uses rewards (scored for molecules that satisfy its goals) to guide the algorithm
<ul style="list-style-type: none"> ▶ Time period: 46 days ▶ The alg. proposed 30000 potential drugs ▶ Computer software filtered compounds ▶ Chemists selected six molecules ▶ Two of them showed no activity 			

	<ul style="list-style-type: none"> ▶ Two other molecules with promising activity were synthesized in lab 📖 One compound performed well against kinase screens 📖 Its metabolic stability in mice tested <p>Analogy: Alg. to find Times Square in New York City using Google Maps</p>	
AI identifies drug candidate in weeks		CEN.ACS.ORG, 2019.
	SAM LEMONICK	

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.

Task	Predictive models	Reactive trajectories	Prediction of reactivity <ul style="list-style-type: none"> ○ Conformational descriptors alone 📖 Accuracy: 85%
Methods	○ Computational Statistical mechanics—transition interface sampling		▪ Simulates Kinetics of reaction
	○ LASSO		▪ Feature regularization
	○ QM/MM TIS		▪ Generated reactive trajectories
	○ Machine learning		▪ Selects features relevant to reactivity
Machine Learning Identifies Chemical Characteristics That Promote Enzyme Catalysis		J. Am. Chem. Soc., 141, 2019, 4108–4118, DOI: 10.1021/jacs.8b13879	
Brian M. Bonk, James W. Weis, and Bruce Tidor			

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.

Methods	○ Molecular matched pair (MMP) analysis	Discipline	QSAR.special case
Application. Bio			
<ul style="list-style-type: none"> ○ ADME ○ Bioisosterism ○ Plasma protein binding ○ Oral exposure ○ Potency ○ Intrinsic clearance ○ Metabolism <ul style="list-style-type: none"> ▪ Herg and p450 in vitro ○ Glucuronidation clearance ○ Selectivity against off-targets ○ Mode of action 			Application.Properties <ul style="list-style-type: none"> ▪ Aqueous solubility ▪ logD, lipophilicity
Matched Molecular Pair Analysis in Short: Algorithms, Applications and Limitations			Computational and Structural Biotechnology Journal 15 (2017) 86–90, http://dx.doi.org/10.1016/j.csbj.2016.12.003
Christian Tyrchan, Emma Evertsson			

AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.

Task	Hospital mortality	Predicting	Learning	Deep learning models
Database	Electronic health records from two US academic medical centers		Data	<ul style="list-style-type: none"> ▪ Adult patients: 216,221 ▪ Data unrolled → 46,864,534,945 points ▪ Discharge diagnoses: 1–228

Scalable and accurate deep learning with electronic health records	Npj (Nature Partner Journals) Digital Medicine, 2018, 1:18 , doi:10.1038/s41746-018-0029-1
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Michaela Hardt , Peter J. Liu , Xiaobing Liu , Jake Marcus, Mimi Sun , Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flore , Gavin E. Duggan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin , Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig , Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte , Michael D. Howell, Claire Cui, Greg S. Corrado and Jeffrey Dean	
AI.Synthesis_Organic — AI.Synthesis — AI.Organic — AI.	
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for druglike molecules	J Chem Inf Model. 2013;53(7):1563–75
Lusci A, Pollastri G, Baldi P.	
Deep learning for druginducedliver injury	J Chem Inf Model. 2015;55(10):2085–93
Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L.	
Deep neuralnets as amethod for quantitative structure-activity relationships	J ChemInf Model. 2015;55(2):263–74
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V.	
Deep biomarkers of human aging: application of deep neural networks to biomarker development	Aging (AlbanyNY) 2016;8(5):1021–33
Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A	
Deep architectures for protein contactmap prediction	Bioinformatics. 2012;28(19):2449–57
Di Lena P, Nagata K, Baldi P.	
Using deep learning toenhance cancer diagnosis and classification	In: Proceeding of the30th International conference on machine learning. Atlanta, GA: JMLR: W&CP; 2013.
Fakoor R, Ladhak F, Nazi A, Huber M.	
Deep convolutional neuralnetworks for annotating gene expression patterns in the mousebrain	BMC Bioinf. 2015;16:147
Zeng T, Li R, Mukkamala R, Ye J, Ji S.	
A deep learning framework for modeling structural features of RNAbinding protein targets. Nucleic	Acids Res. 2016;44(4):e32
Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C	
Modeling epoxidation of drug-like molecules with a deep machine learning network	ACS Cent Sci. 2015;1(4):168–80
Hughes TB, Miller GP, Swamidass SJ.	
DeepTox: toxicity prediction using deep learning.	Front Environ Sci. 2016;3:80
Mayr A, Klambauer G, Unterthiner T, Hochreiter S.	

Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data	MolPharm. 2016;13(7):2524–30.
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A.	
Deep learning in label-free cell classification	Sci Rep. 2016;6:21471
Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, NiaziKR,et al.	
Classifying and segmenting microscopy images with deep multiple instance learning	Bioinformatics. 2016;32(12):i52–9
Kraus OZ, Ba JL, Frey BJ.	
Intra- and inter-fractional variation prediction of lung tumors using fuzzydeep learning	IEEE JTranslEng Health Med. 2016;4:4300112.
Park S, Lee SJ, Weiss E, Motai Y.	

ACS.org ;sciencedirect.com : Information Source

R. Sambasiva Rao, School of Chemistry
Andhra University, Visakhapatnam
rsr.chem@gmail.com