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ABSTRACT

Since the discovery of Hammett equation in mid 1930s, the interest in its use is ever increasing among
physical-organic chemists in elucidating the reaction mechanisms and the site of attack in several
aromatic systems. In this article we have tried to explore the cumulative effects of substituents on the
reaction rates by Hammett equation and on the activation energies in the reactions of polysubstituted
benzene derivatives. In the correlation of Hammett equation while explaining the cumulative effects of
substituents, we have used o values for conjugative electron withdrawing substituents and &* values for
mesomerical electron donating substituents if the normal substituent constants failed to give good
correlation. To exemplify the title concept, we have considered several reactions of polysubstituted
benzene derivatives.

Keywords: Hammett equation, cumulative effects of substituents, additive effects.

INTRODUCTION

In continuation of our crusade on chemical education [1-4], we are presenting this treatise on additive
properties of substituents in polysubstituted benzene derivatives. Ever since the Hammett equation was
developed [5, 6], there were several hundreds of redox, condensation, disproportionation, nucleophilic and
electrophilic substitution, and addition reactions with meta- and para- substituted benzene derivatives in
the literature, for which the Hammett reaction (p) constants were reported. It is one of the most celebrated
equations in physical organic chemistry and was formulated as log (K/K,) = po or log (k/k,) = pc where K
and K, refer to the dissociation equilibrium constants of substituted and parent benzoic acids, respectively,
and, k and k, refer to the rates of reactions of meta- or para- substituted benzene and un-substituted
benzene derivatives, respectively. Here o refers to the substituent constant of a particular substituent and p
refers to the reaction constant. Hammett equation using ¢, c* and Hammett normal substituent constants
values to methoxide ion catalyzed condensation of mono and di-substituted benzaldehydes with 3,5-
dimethyl-4-nitroisoxazole in methanol medium, with several other ketones in methanol-water mixtures,
several solvolysis reactions, and correlation of cation-t binding energies in the nicotinic receptors to
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witness the cumulative effects of substituents and the activation energies on rates are the new features of
the present article.

Discussion: The observation of cumulative effects of substituents in polysubstituted benzene derivatives
on rates or equilibriums started with Hammett himself [7]. Later, assuming the entropies of activation are
essentially constant, in several reactions the effect of substituents on activation energies in polysubstituted
compounds could be expressed as the sum of the individual effects of the substituents in the corresponding
monosubstituted compounds [8-10]. Since in those reaction series, the effects of multiple substituents on
rate (or equilibrium) constants must be the sum of the effects of the individual substituents, Hammett has
given a substituent constant for the 3,4-dimethyl substituent (-0.229) which appears to agree well with the
sum of the values for m- and p- methyl groups [7]. Therefore it appeared worth for us for a physical-
organic chemistry graduate class-room as a curriculum, to see substituent constants and the activation
energies are in general additive in polysubstituted benzene derivatives.

For this purpose we started with the work that was published form our laboratory [11]. 3,5-dimethyl-4-
nitroisoxazole was known to condense with benzaldehydes in the presence of mild bases to give 3-methyl-
4-nitro-5-styrylisoxazole [12]. The mechanism of the reaction is depicted in scheme 1.

Scheme 1
CH3 NO, CH, NO,
/ \ N OH" fast / \ 4 H,O
N CH N\ CHZ_
\O 3 (0]
Hs NO,
@ k, rate determlnlng W ?
N.o~ ~CH;—CH
+ CH30H X
- CH3O"
CH3 N()2 CH3 NOZ
OH
I o m |
;tof;\CHCH%<\;l -~ ~o”  CHeCH
X
3-methyl-4-nitro-5-styrylisoxazole %

On the basis of the mechanism, the condensation reaction of aldehyde and isoxazole depends upon the ease
of C-C bond formation between the carbanion of isoxazole and the carbonyl carbon atom of the aldehyde.
This is more easily formed when the carbonyl carbon atom of aldehyde is more electrophilic. That is, the
presence of electron withdrawing substituents increase the rate and electron donating substituents decrease
the rate. This could be seen from the effect of substituents on the rates of condensation of aldehydes with
isoxazole (Table 1, Figure 1). Hammett plot is first constructed for meta substituents using ™ values and
looked further for para substituents to be on the line of correlation (plot not shown). But the para
substituents did not fall on the line. This is due to the presence of multi component substituent effects of
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para substituents. Hence Hammett plot (Figure 1) is constructed taking log k values as a function of
substituent constants ™ and o* which gave a p* value of + 0.45 and with correlation coefficient of 0.95.
Though the Hammett plot is a bit away from a good correlation but the overall trend is unmistakable. Here
we have used the o~ values for conjugative electron withdrawing substituents and " values for
mesomerical electron donating substituents. The substituent constant values ¢™ and c* are from literature
[13]. Three di-substituted benzaldehydes, i.e. compounds with serial numbers 2, 3, and 13 in the table 1
and the graph also correlated very well using the >c* and Y™ values. This shows a good cumulative effect
of di-substituted benzaldehydes on rates. Here the Yo" value of 2,4-dimethoxy benzaldehyde is taken as
the sum of the c* values of the 2- and 4- methoxy two mono substituted benzaldehydes {>c" = [- 0.78 + (-
0.28) = - 1.00}. Similarly X" for the 3,4-diemthoxy benzaldehyde and Yo for 2,6-dichloro benzaldehyde
were computed. Also the cumulative effect was seen in the activation energies. As an example the
experimentally observed value of activation energy of 2,4-dimethoxy benzaldehyde is 95.8 kJ mol™. If the
activation energies of benzaldehyde, 2-methoxy and 4-methoxy benzaldehydes are represented as E;, E,
and Ej respectively, then the calculated activation energy for 2,4-dimethoxy benzaldehyde is given by
AFE carcutated) = E1 + (E2 — E1) + E3 — E;) = 116 + (108 — 116) + (104 — 116) and which was found to be 96.0
kJ mol™. Hence there is a good correlation of cumulative effects of disubstituted benzaldehydes toward the
activation energies. Similarly the other two benzaldehydes (3 and 13 from the table) also gave a good
correlation.
Table 1: Effect of substituents in the benzaldehydes on rate of methoxide ion catalyzed
condensation with 3,5-dimethyl-4-nitroisoxazole in methanol medium at 301 K.
The data given in this table is from reference 11.

S.No. Substituent Hammett k X 102_1 AE” (k) mol™)
X) substituent constant mol™ sec Experimental *Calculated
1 4-MeO -0.78 1.18 104
2 2,4-diMeO -1.00 4.12 95.8 96.0
3 3,4-diMeO -0.67 6.71 87.8 88.6
4 2-MeO -0.22 6.84 108
5 3-0 (3-OH) -0.20 6.00 94.1
6 H 0.00 7.08 116
7 3-MeO 0.11 6.51 100
8 4-Cl 0.11 9.80 98.0
9 3-Cl 0.37 9.90 105
10 3-Br 0.39 9.62 98.3
11 2-Cl 0.37 15.6 106
12 3-NO, 0.71 23.0 71.8
13 2,6-diCl 0.74 25.8 96.2 95.8
14 4-NO, 1.27 30.0 72.7

*AE? (disusbtituted benzaldehyde) = E; + (E, — E;) + (E; —E,) where E; is the activation energy of unsubstituted benzaldehyde,
and E, and E; are of the two mono-substituted ortho and para benzaldehydes respectively.
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Figure 1: Hammett plot of log k versus Hammett substituent constants
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The following are some of the putative examples which explain the title concept very well in several
reactions [14-19] (Table 2- 10 and figures 2-10) to mention here but a few instances were explained in this
article. This kind of observation was recently witnessed in the solvolysis of 2-chloro-2-(3,4-disubstituted)
phenylpropanes [20].

in 50% aqueous ethanol at temp 303 K (Reference 14)

Table 2: Hydroxide ion catalyzed condensation of benzaldehydes with acetone

S No. Subigi(t)uent Sﬂggﬁzﬁt mlél_xl 122_1 AFE? (kJ mol™)
constant Experimental *Calculated
1 4-NO, 1.27 124 38.0
2 3-NO, 0.71 45.7 43.9
3 2,4-dichloro 0.48 28.0 41.8 44.3
4 3-Cl 0.37 17.0 41.8
5 2-Cl 0.37 12.6 53.9
6 4-Cl 0.11 10.8 47.7
7 3-OMe 0.11 9.80 43.9
8 H 0.00 5.50 57.3
9 3-OH 0.2 9.00 46.0
10 2-OMe -0.22 14.7 40.1
11 3-MeO, 4-OH -0.49 4.20 40.1 38.9
12 4-OH 0.6 2.60 52.3
13 3,4-diMeO -0.67 5.00 343 38.3
14 4-MeO -0.78 3.30 51.4
15 2-MeO, 4-OH -0.88 15.7 30.5 314
16 2,4-MeO -1.00 20.0 35.1 34.6
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Figure 2: Hammett plot in the condensation reactions of benzaldehydes and acetone
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Table 3: Hydroxide ion catalyzed condensation of benzaldehydes with ethyl methyl ketone
in 50% aqueous ethanol at temp 303 K (Reference 14)

. Hammett 3 + -1
S.No. Subsil(tuent substituent k le 10 ; AE” (kJ mol™)
X) constant mot ™ sec Experimental *Calculated
1 4-NO, 1.27 92 40.1
2 3-NO, 0.71 49.4 42.2
3 2,4-dichloro 0.48 12.3 38.3 38.5
4 3-Cl 0.37 14.1 42.2
5 2-Cl 0.37 16.0 50.7
6 4-Cl 0.11 5.20 44.0
7 3-OMe 0.11 5.80 46.0
8 H 0.00 7.40 57.4
9 3-OH -0.2 5.60 47.8
10 2-OMe -0.22 9.70 36.8
11 3-MeO, 4-OH -0.49 2.10 47.8 49.7
12 4-OH -0.6 1.30 61.2
13 3,4-diMeO -0.67 2.00 41.1 42.6
14 4-MeO -0.78 1.60 51.7
15 2-MeO, 4-OH -0.88 1.90 40.6 41.4
16 2,4-MeO -1.00 1.74 30.6 31.8
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Figure 3: Hammett plot in the reactions of benzaldehydes with ethyl methyl ketone
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Table 4: Hydroxide ion catalyzed condensation of benzaldehydes with cyclohexanone
in 50% aqueous ethanol at temp 303 K (Reference 15)

. Hammett 3 + -1
S.No. Subsil(tuent substituent k le 10 1 AE” (kJ mol”)
X) constant mot ™ sec Experimental *Calculated
1 4-NO, 1.27 220 38.0
2 3-NO, 0.71 121 41.4
3 2,4-dichloro 0.48 54.7 43.1 42.1
4 3-Cl 0.37 23.0 59.4
5 2-Cl 0.37 26.6 51.8
6 4-Cl 0.11 11.3 47.7
7 3-OMe 0.11 11.0 51.0
8 H 0.00 6.65 57.3
9 3-OH -0.2 10.3 53.5
10 2-OMe -0.22 8.00 42.3
11 3-MeO, 4-OH -0.49 3.24 55.6 56.4
12 4-OH -0.6 2.72 62.7
13 3,4-diMeO -0.67 4.56 53.5 54.5
14 4-MeO -0.78 3.56 60.6
15 2-MeO, 4-OH -0.88 3.22 48.5 47.7
16 2,4-MeO -1.00 2.14 45.1 45.6
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Figure 4: Hammett plot in the reactions of benzaldehydes with cyclohexanone
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Table 5: Hydroxide ion catalyzed condensation of benzaldehydes with acetophenone
in 50% aqueous ethanol at temp 303 K (Reference 14)

Substituent Ham_mett k X 10° AE” (kI mol™)
S.No. (X) substituent mol™ sec’t .
constant Experimental *Calculated
1 4-NO, 1.27 43.9 36.4
2 3-NO, 0.71 24.9 38.0
3 2,4-dichloro 0.48 13.3 34.7 35.1
4 3-Cl 0.37 20.0 41.0
5 2-Cl 0.37 10.6 40.1
6 4-Cl 0.11 6.70 41.8
7 3-OMe 0.11 7.90 41.4
8 H 0.00 7.76 46.8
9 3-OH -0.2 7.10 42.2
10 2-OMe -0.22 11.3 42.2
11 3-MeO, 4-OH -0.49 3.80 48.1 49.3
12 4-OH -0.6 2.60 53.9
13 3,4-diMeO -0.67 3.20 48.9 47.7
14 4-MeO -0.78 3.40 52.3
15 2-MeO, 4-OH -0.88 3.74 48.5 48.5
16 2,4-MeO -1.00 3.21 45.6 46.8
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Figure 5: Hammett plot in the reaction of benzaldehydes with acetophenone

0] @] -
T e )
H CH

X

Table 6: Hydroxide ion catalyzed condensation of benzaldehydes with 2-OH-4-OMe-propiophenone in
50% aqueous ethanol at temp 303 K (Reference 14)

SN Substituent Ham_mett k X 10° AE” (kJ mol)
.No. (X) substituent mol™ sect :
constant Experimental *Calculated

1 4-NO, 1.27 39.0 42.2

2 3-NO, 0.71 16.9 47.7

3 2,4-dichloro 0.48 9.01 48.9 49.7
4 3-Cl 0.37 10.5 53.5

5 2-Cl 0.37 7.50 57.3

6 4-Cl 0.11 5.52 51.8

7 3-OMe 0.11 6.52 55.2

8 H 0.00 5.32 59.4

9 3-OH -0.2 6.13 56.4

10 2-OMe -0.22 4.42 48.1

11 3-MeO, 4-OH -0.49 3.20 51.8 53.5
12 4-OH -0.6 1.75 64.8

13 3,4-diMeO -0.67 1.40 53.9 52.7
14 4-MeO -0.78 1.92 64.0

15 2-MeO, 4-OH -0.88 3.01 59.4 60.6
16 2,4-MeO -1.00 1.64 61.4 59.8
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Figure 6: Hammett plot in the reaction of benzaldehydes with 2-OH-4-MeO-propiophenone
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Table 7: Dissociation of benzoic acids in 57.6 % ethanol in water at 25°C (Reference 9)

S.No. Subgl(t)uent Hammett ¢ K X 10°
1 p-NO, 0.78 316
2 H 0.00 1.2
3 3,5-(CHs), 012 0.741
4 3,5-(C,Hs), -0.14 0.588
5 3,4,5-(CHs)3 -0.297 0.49
6 3,4,5-(C;Hs)3 -0.297 0.38

“these are Yo values
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Table 8: Solvolysis of t-cumyl chlorides in 90% aqueous dioxane at 25°C (Reference 17)

15

log K/IKo

':—y =0.019866 + 1.7707x R=0.99633

O\\ /OH

C

X

0.2 0.4
Hammett sigma
Figure 7: Hammett plot for dissociation of benzoic acids in 57.6% ethanol in water at 298 K

O\\C/O

X

0.6 0.8

+
. Hammett 5 ) AH
S No. Subgl(t)uent substituent 10° X klsoh,/sec kcals. mol™
constant Experimental Calculated
1 H 0.00 12.4 18.8
2 4-i-PrOH -0.15 221 17.4
3 3-Me -0.06 24.8 18.6
4 4-CycloPrOH -0.462° 1947 16.1
3-Methyl-4-
5 cycloPrOH -0.522 2133 16.0 15.9
6 3,5-diMe -0.12 47.3 -
3,5-diMe-4-
7 cycloPrOH -0.582 460 16.9 15.7

®The sigma value is from Hahn, R. C. Corbin, T. F. and Shechter, H.

J. Am. Chem. Soc. 1968, 90, 3403
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Table 9: Rate constants, relative rates, and activation parameters for the solvolysis of substituted

phenyl(methy1)ethyl chlorides in 90% aqueous acetone 25°C (Reference 18)

AE?
S.No. Subsgl(tuent Hammett 10° X ken/sec | Relative rate keals/mol
X) slgma Experimental Calculated

1 H 0.00 12.4 1 19.5

2 3-Me -0.06 24.8 2 19.4

3 4-Me -0.17 322 26 17.8

4 4-t-Bu -0.2 178 14.4 17.9

5 3-Cl 0.37 0.194 0.0156 21.3

6 3,5-Me, -0.12 47.3 3.82 -

7 3-Cl-4-Me 0.2 3.83 0.313 19.8 19.6
8 3-Cl-4-t-Bu 0.17 1.22 0.0996 20.8 19.7
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Figure 9: Hammett plot for the solvolysis of substituted
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Table 10: Plot of log [ECso/ECso(Wt)] vs. cation-n binding ability
for various Trp mutants at position 0149 (Reference 19)

Cation-rt binding EC ECso(wit)
S.No. Side chain ability I\ZO Corrected
kcals/mol H uM
1 H-Trp 32.6 1.2 50
2 5-F-Trp 275 4.7 200
3 5,7-F2-Trp 23.3 13 550
4 5,6,7-F3-Trp 18.9 34 1400
5 4,5,6,7-F4-Trp 14.4 65 2700
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Figure 10: Plot of log [EC(50)/EC(50)(wt)] versus cation-pi binding ability for various
Trp mutants at position alpha-149.
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