Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2025, 14 (2): 548-591 (International Peer Reviewed Journal)

CNN - 66E

IAM (Intelligence Augmented/Assisted Method(s)) Transformers --architectures & Fits (2025)

Information Source	sciencedirect.com;			
S. Narasinga Rao M D	K. Somasekhara Rao, Ih D	R. Sambasiva Rao, Ih D		
Associate Professor,	Dept. of Chemistry,	Dept. of Chemistry,		
Emergency Medicine dept.,	Acharya Nagarjuna Univ.,	Andhra University,		
Andhra Medical College,	Dr. M.R.Appa Rao Campus,	Visakhapatnam 530 003,		
King George Hospital	Nuzvid-521 201, India	India		
Visakhapatnam, A.P., India				
snrnaveen007@gmail.com	sr_kaza1947@yahoo.com	rsr.chem@gmail.com		
(+91 98 48 13 67 04)	<u>(+91 98 48 94 26 18)</u>	(+91 99 85 86 01 82)		

Conspectus: The paper entitled "Attention is All You Need" by Ashish Vaswani et al. in the year 2017, brought renaissance in Text-sequence-data processing. Also, it has noteworthy influence in computational paradigm with other data structures. The new approach became a state-of-knowledge model and won the favour of data scientists in all application-domains. This model became popular as

Transformer net (TransF Net) or Transformer neural network (TransF NN). This network, TransF NN, consists of two modules, viz., attention layer and MLP-NN. They are instrumental in carrying out Natural Language processing (NLP). The evolution of architecture of TransF NN, attention mechanism, and hybridization with other approaches, during these few years, revolutionized computational science. By now, this approach is in the sought-after tools in extracting information/knowldege with multi-modal data (viz.Text, numerical time-series, sound (speech), image/video sequence, and tactile-sense-output) with local and global inter-dependencies.

The architectures of Transformer neural nets (TransF-NN) or Transformer nets (TransF-N) employed in this state-of-knowledge-methods-module for dataTOknowledge transformation are

- Sparse transformer (ResidualTop-C_sparse attention)
- △ Pancreas segmentation (PanSeg) Transformer
- *△* Co-evolution Transformer
- EEG Conformer
- lacktriangle Swin Transformer
- line HRSTNet: High-Resolution Swin Transformer Network
- line HQRSTNet: High-Quality Resolution Swin Transformer
- lacktriangletic EfficientNet and Swin Transformer
- Squeeze and Excitation-based UNet TRansformers (SE-UNETR)
- Squeeze and Excitation-based High-Quality Resolution Swin Transformer Network (SE-HQR-STNet)
- 👃 TCN
- 👃 RS-MOCO
- A RBMDC-Net

The results of modelling of tasks (vide infra) with transformer NNs are more accurate in comparison with NNs, machine learning algorithms or discipline-wise theorical approaches.

Computational Quantum Chemistry (CQC): To predict quantum chemical energies and physical-/chemical-/physico-chemical/chemico-physical energies/properties

- Total Molecular energy, orbitals-energies, HOMO-LUMO energy gap, dipole moment, electron density, ESP, bond energies, electronic spectra, NMR, Reaction Pathways, Reaction Mechanisms, Transition State
- ^(C) Quantum Monte Carlo (QMC) Simulations
 - Approximation of Ground-State Energy in Many-Body Systems
- left Chemistry
 - Structure-activity relationship (SXR)
 - Biological activity (e.g., drug efficacy, toxicity, or binding affinity) in drug design, materials science, and toxicology

- Molecular Property Prediction:
 - Boiling point, toxicity, or binding affinity
 - Solubility of Organic Compounds

- Nonlinear Solubility is due to nonlinear interactions like hydrogen bonding, van der Waals forces, and entropy changes upon dissolution,
 - SFHformer captures these characteristics through its hybrid spatial and frequency domain approach
- Predicting Reaction Rates in a Multi-Step Reaction Network
- Adsorption Isotherms
 - Predicting Adsorption on a Surface (Langmuir-Freundlich Isotherms)
- Predicting Toxicity of Chemical Compounds
 - for Safety Assessment
- Nonlinear Thermodynamic Equilibria: Chemical Equilibrium in a Multi-Component System:
 - At equilibrium, the functional relation between the concentrations of reactants and products is nonlinear, more so when there are competing reactions or there are changes in phase.
 - SFHformer accounts for both local interactions (e.g., bond strengths, charge distributions) and global properties (e.g., temperature, pressure effects). That is why, it predicts equilibrium concentrations more accurately, outperforming theoretical and other computing models
- Predicting Reaction Kinetics (Rate Constants)
- Predicting Molecular Properties for Chemical Engineering
- Predicting Thermodynamic properties (e.g., heat capacity, entropy, enthalpy) and kinetic properties (e.g., reaction rates, activation energies)
- Predicting Boiling points, melting points
- A Nanomaterials (Physics, chemistry Biology)
 - Nanomaterials exhibit unique physical properties (like superconductivity, magnetic behavior) that are difficult to predict due to their complexity and the high number of influencing variables (like size, shape, surface properties) involved.
 - Nanomaterials exhibit responses like optical absorption, band gaps, and thermal conductivity
 - (Smart)-Nanomaterial Discovery: use of Nanocatalysts in industrial process viz. hydrogen production, carbon capture, and chemical synthesis is the need of the hour.
 - New nano-materials with desirable properties (e.g., photovoltaic devices, superconductors)
 - Rational design of nanomaterials in specific applications, such as catalysis, electronics, and energy storage
 - Nano-Scale materials for Optical Sensing and Imaging
 - Predicting Nanoparticle-Polymer Interactions in Drug Delivery Systems
- △ Fusion Reactors (e.g., tokamaks)
 - Predicting Reactor Decommissioning and Safety
 - o Modeling Plasma Behavior in Fusion Research
 - Design of fusion reactors and energy optimization in nuclear fusion research, contributing to the goal of clean, sustainable energy

- Fusion reactors require materials that can withstand extreme conditions such as high temperatures, radiation, and corrosive environments
- - Predicting the optical properties of molecules, such as absorption spectra and fluorescence. This is essential for the design of optical materials and pharmaceuticals
 - Design of materials for light-emitting devices and photodynamic therapy.
 - Molecular sensors and optical materials of advanced materials for solar cells, LEDs, and bioimaging, contributing to innovations in photonics and quantum materials
- la Environmental monitoring
 - Chemical Sensor Data Analysis: The time-series sensor data from gas sensors (e.g., detecting gases like CO2, NO2, or O3) over time and their corresponding chemical concentrations

Medical Diagnosis

- G Medical Diagnosis using Images
 - Lung Cancer Detection (CT Scan Image) and Classification
 - Tumor Segmentation (MRI Brain Scan)
 - Medical Diagnosis of Diabetic Retinopathy Using Eye Imaging Data
 - Early Diagnosis of Alzheimer's Disease Using MRI Brain Imaging
 - Brain Tumor Detection Using MRI and PET Scans
- lagnosis using Time-Series Data
 - Sepsis Prediction (Time-Series Data)
 - Heart Disease Prediction (ECG Time-Series Data)
- Clinical Decision Support Systems (CDSS)
 - Multi-Modal Diagnosis (Image + Time-Series Data)

Bio-Medical research

- AlphaFold, a model based on Transformer architecture
 - To predict 3D-protein structures from amino acid sequences
- Activity of bio-molecules
 - Predicting
- Functional activity of an enzyme
- Binding Affinity for Kinase Inhibitors
- Anticancer Activity (e.g., Inhibition of Kinase Activity)
- Inhibition of HIV-1 Protease
- Activity of Enzyme Inhibitors
- Binding Affinity for HIV Protease Inhibitors
- Drug-Protein Interaction in Alzheimer's Disease
- Drug Resistance in Cancer Therapy (Optimizing Anti-Cancer Drug Binding Using Attention Maps)
- ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) Properties
- Toxicity levels (e.g., LD50 values, mutagenicity, or carcinogenicity) for Chemical Compounds (chemical structures represented by SMILES or molecular graphs)
- Protein-Ligand Binding Affinity for Drug Discovery

Protein-Protein Interactions in Disease Pathways
Personalized Medicine for Cancer Treatment Using Genomic Data
Drug Repurposing for Rare Diseases
Detecting Mutations in Genes Associated with Brain Diseases

Keywords: Artificial intelligence (AI); Heuristic expert systems— Integrated expert systems--Classical Neural Nets (MLP; SOM; ARTMAP) --Capsule Neural Nets — Attention_Mechanism--TransFormer_Nets — Hybrid_TransFormer_Networks -- Artificial General intelligence (AGI); Vitual reality (VR) – Meta Verse (MV)--

CNN : [C [Computations; Computer; Chemistry, Cell, Cellestial, Cerebrum] NN [New News; News New; Neural Nets; Nature News; News of Nature;]] Fits : [Figure Image Table Script;]

Input: Dataset	
Output: One sample with the	e best features
//////// filter phase/////////	
Weigh features of dataset a	ccording to F-Score algorithm
Keep high weights according	ng to dimensions of dataset
//////// generate generation//	///////
Generate the first generatio	n among selected features randomly from the previous step
for (each hawk (Xi)) do	
-calculate the fitness of	f sample
-While (fitness<0.65)	do
select one random feature a	nd replace it
-calculate the fitness of same	ple
//////// hho phase/////////	
While (stopping condition i	is not met) do
-for s=2 to number_of	_samples do
Calculate the	fitness values of hawks
Set Xrabbit as	s the location of rabbit (best location)
for (each haw	k (Xi)) do
Upda	ate the initial energy E0 and jump strength J ⊳
E0=2	2rand()-1, J=2(1-rand())
Upda	ate the E
if (E	$ \geq 1$) then \triangleright Exploration phase
	Update the location vector
if (E	E <1) then ▷ Exploitation phase
	if $(r \ge 0.5 \text{ and } E \ge 0.5)$ then \triangleright Soft besiege
	Update the location vector
	else if (r ≥ 0.5 and $ \mathbf{E} \leq 0.5$) then \triangleright Hard besiege
	Update the location vector
	else if (r < 0.5 and $ E \ge 0.5$) then \triangleright Soft besiege with progressive rapid dives
	Update the location vector
	else if (r < 0.5 and $ E $ < 0.5) then \triangleright Hard besiege with progressive rapid dives
	Update the location vector

Table 1. Details of the dataset used

Class	Database	Train	Test	Total
Pneumonia	COVIDx-CT	3419	854	4273
Tuberculosis	PTB	401	100	501
Covid-19	SARS-CoV-2 CT	1986	496	2482
Lung cancer	CIA	4355	1088	5043
Normal	-	4302	1292	5594

Dataset	Classifian		With	nout			W	ith	
Dataset	Classifier	Acc (%)	Sp (%)	Sn (%)	F1-score	Acc (%)	Sp (%)	Sn (%)	F1-score
	SVM	73	68	86	87	97	95	97	97
De europeire	RF	91	93	93	93	98	96	98	98
Pheumonia	XGBoost	93	94	92	93	98	97	98	98
	DNN	87	89	89	89	96	95	97	96
	SVM	83	85	84	85	97	95	98	96
Tubaraulasia	RF	89	91	92	92	97	96	98	97
Tuberculosis	XGBoost	89	92	91	92	98	96	99	98
	DNN	84	86	86	86	96	95	97	96
	SVM	59	58	61	63	96	95	98	98
0	RF	90	93	93	94	97	97	99	99
Covid 19	XGBoost	94	94	93	93	98	98	99	99
	DNN	69	82	87	87	96	95	98	98
	SVM	66	68	69	69	98	97	98	97
	RF	90	92	91	91	99	98	99	97
Lung cancer	XGBoost	93	94	97	97	99	98	99	98
	DNN	78	69	88	88	98	97	98	97
	SVM	65	64	66	66	97	96	98	98
Marmal	RF	91	93	91	91	98	97	99	98
Normai	XGBoost	92	93	95	95	98	99	99	99
	DNN	72	58	86	86	97	96	98	97

Table 2. Evaluation of different classifiers into the dataset with and without feature selection

Method	Class	Accuracy (%)
Deep learning 20	2	89.5
DCNN 21	2	93.64
CNN 22	2	98
AE-CNN 23	2	80.29
VDSNet ²⁴	2	73
eKNN with ACO ²⁵	2	97.5
Ensemble learning ²⁶	2	98.56
3DDCNN 27	2	98.51
Proposed method	5	98.53

H:height;W: width; D: depth

Author	Dataset	Splitting Type	Method: Dice
Müller et al. (3)	COVID-19-CT-Seg	5-Fold	3D U-Net:0.761
Ma et al. (4)	COVID-19-CT-Seg	5-Fold	nnU-Net:0.673
Wang et al. (5)	COVID-19-CT-Seg	5-Fold	3D U-Net: 0.704
Singh et al. (25)	COVID-19-CT-Seg	Train:70% Validation:10% Test:20%	LungINFseg:0.8034
Aswathy et al. (7)	COVID-19-CT-Seg	Train:60% Validation:20% Test:20%	Cascaded 3D U-Net:0.820
Our method	COVID-19-CT-Seg	5-Fold	UNETR:0.8519 SE-UNETR:0.8581 HRSTNet: 0.8663 SE-HQRSTNet: 0.8684
Zheng et al. (26)	MosMed	5-Fold	3D CU-Net:0.668
Our method	MosMed	5-Fold	UNETR:0.6901 SE-UNETR:0.6935 HRSTNet: 0.7072 SE-HQRSTNet: 0.7089

Comparison of traditional self-attention mechanism (left) vs. linear self-attention mechanism (right). X is input, O is output. Red fonts show the specific changes we apply to self-attention to linearize

Table 7

Quantitative segmentation performance evaluation and Comparison with diverse state-of-art methods across multi-center T1W and T2W MRIs. Multi-center T1W MRI Pancreas segmentation

Methods	Modality	Dice (%)	Jaccard (%)	Precision (%)	Recall (%)	HD 95 (mm)	ASSD (mm)
nnUNet	2D	80.19	80.01	80.19	81.01	20.99	1.75
SSformer	2D	78.81	77.01	76.67	75.89	23.09	2.54
SwinUNETR	2D	76.01	75.21	73.21	74.11	27.78	2.98
MedSegDiff	2D	83.75	82.11	81.78	80.99	18.97	1.56
SynergyNet	2D	85.78	84.37	84.09	84.44	17.88	0.95
VNet	3D	73.15	74.01	72.11	84.92	71.47	2.99
TransBTS	3D	75.89	74.18	74.87	73.92	26.44	3.01
MedNext	3D	80.05	79.99	83.33	80.02	17.77	1.67
nnFormer	3D	82.11	83.28	83.23	81.11	18.45	1.98
nnUNet	3D	80.09	81.29	83.87	81.98	18.12	1.79
nnUnet-Res	3D	83.02	84.01	82.91	82.54	17.92	1.52
PanSegNet	3D	86.02	85.78	84.18	84.76	17.47	0.92

Transformer Net	nanananananananananananananananananana	naran anananan anananan anananan anananan
A A A A A A A A A A A A A A A A A A A A		

Figure 1 A brief chronology of polyp segmentation.

- ✓ Before 2015, methods relied on hand-crafted features combined with machine learning algorithms.
- ✓ Since 2015, U-Net [20] and FCN [21] have significantly advanced the development of deep learning techniques in polyp segmentation.

Tak	ole 1 Su	ummary of polyp	o segmenta	tion methods	(published from 2019 to 2021)	
#	Year	Method	Pub.	Backbone	Description	Code
1	2019	SFA [22]	MICCAI	light UNet	Boundary-sensitive loss; selective feature aggregation	N/A
2	2019	ResUNet++ [23]	ISM	ResUNet	Squeeze and excitation blocks; atrous spatial pyramid pooling (ASPP); attention blocks	https://github.com/DebeshJha/ ResUNetPlusPlus
3	2020	PolypSeg [24]	MICCAI	U-Net	Improved attention mechanism; separable convolution	N/A
4	2020	ACSNet [25]	MICCAI	ResNet34	Adaptively select; aggregate context features through channel attention	https://github.com/ReaFly/ACSNet
E	2020	PraNet [26]	MICCAI	Res2Net	Parallel partial decoders; reverse attention	https://github.com/DengPingFan/PraNet

1897-1897-1897-1897-18	87.687.687.687	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	98 168 168 169 169 169 169 169 169 169 16	987 - 1887 - 1887 - 1887 - 1887 - 1887 - 1887 - 1887 - 1887 - 1887		
					convolution	
44	2023	DuAT [62]	PRCV	PVT	Dual-aggregation Transformer; global-to-local spatial aggregation; selective boundary aggregation	https://github.com/Barrett-python/ DuAT
45	2023	PolypSeg+ [63]	TCYB	ResNet50	Adaptive scale context module; lightweight attention mechanism	https://github.com/szuzzb/ polypsegplus
46	2023	APCNet [64]	TIM	ResNet50	Attention-guided multi-level aggregation strategy; complementary information from different layers	N/A
47	2023	RA-DENet [65]	CBM	Res2Net	Improved reverse attention; distraction elimination	N/A
48	2023	EFB-Seg [66]	Neurocom- puting	ConvNet	Boundary Embedding; semantic offset field learned	N/A
49	2023	PPNet [67]	CBM	P2T	Channel attention; pyramid feature fusion	N/A
50	2023	Fu-TransHNet [68]	arxiv	HardNet68	CNN and Transformer; multi-view learning	N/A

Table 4 Benchmark results of 24 representative polyp segmentation models (18 CNN-based and 6 Transformer-based models) on five commonly used datasets in terms of SPE and SEN. The top three results are displayed in bold, italic, and underlined fonts

Method	Pub.	ETIS-Lari	b	CVC-Col	onDB	CVC-Clin	licDB	CVC-300)	Kvasir	
		SPE	SEN	SPE	SEN	SPE	SEN	SPE	SEN	SPE	SEN
J-Net [20]	MICCAI 2015	0.703	0.484	0.798	0.525	0.947	0.835	0.965	0.768	0.949	0.857
JNet++ [101]	MICCAI 2018	0.727	0.415	0.828	0.497	0.927	0.795	0.957	0.738	0.986	0.807
5FA [22]	MICCAI 2018	0.781	0.633	0.861	0.703	0.919	0.802	0.934	0.889	0.965	0.799
PraNet [26]	MICCAI 2020	0.805	0.688	0.874	0.740	0.990	0.911	0.988	0.941	0.978	0.912
ACSNet [25]	MICCAI 2020	0.775	0.738	0.873	0.760	0.956	0.909	0.984	0.959	0.973	0.907
MSEG [30]	arxiv 2021	0.844	0.740	0.912	0.753	0.992	0.924	0.989	0.934	0.985	0.900
EU-Net [31]	CRV 2021	0.871	0.872	0.939	0.851	0.986	0.960	0.982	0.969	0.974	0.934
ANet [8]	MICCAI 2021	0.943	0.904	0.952	0.811	0.989	0.952	0.989	0.971	0.986	0.915
MSNet [9]	MICCAI 2021	0.893	0.796	0.931	0.775	0.975	0.933	0.988	0.931	0.981	0.911
JACANet-S [34]	ACM MM 2021	0.887	0.833	0.958	0.801	0.991	0.942	0.992	0.959	0.976	0.911
JACANet-L [34]	ACM MM 2021	0.932	0.813	0.953	0.754	0.992	0.943	0.993	0.940	0.983	0.923
2FNet [35]	IJCAI 2021	0.902	0.745	0.894	0.752	0.973	0.941	0.988	0.952	0.974	0.904
OCRNet [53]	ISBI 2022	0.756	0.747	0.884	0.777	0.959	0.913	0.972	0.945	0.973	0.903
3DG-Net [50]	SPIE MI 2022	0.879	0.820	0.949	0.827	0.990	0.942	0.992	0.957	0.984	0.918
TaraNet [44]	SPIE MI 2022	0.910	0.812	0.947	0.858	0.991	0.955	0.976	0.927	0.982	0.912
FA-Net [102]	arxiv 2023	0.918	0.866	0.940	0.820	0.975	0.934	0.988	0.950	0.987	0.914
FANet [75]	PR 2023	0.910	0.804	0.953	0.761	0.991	0.960	0.990	0.952	0.985	0.926
M2SNet [103]	arxiv 2023	0.893	0.796	0.931	0.775	0.975	0.933	0.988	0.931	0.981	0.911
olyp-PVT [33]	arxiv 2021	0.962	0.902	0.965	0.829	0.992	0.959	0.993	0.943	0.987	0.928
ISNet [46]	CBM 2022	0.955	0.868	0.965	0.821	0.992	0.949	0.991	0.947	0.986	0.913
DuAT [62]	PRCV 2023	0.941	0.891	0.962	0.841	0.992	0.956	0.991	0.956	0.984	0.933
SFPNet [72]	MI 2023	0.961	0.917	0.961	0.837	0.992	0.940	0.991	0.967	0.985	0.910
eDNet [70]	BSPC 2023	0.945	0.893	0.966	0.845	0.991	0.954	0.992	0.950	0.987	0.924
AM-B [104]	arxiv 2023	0.717	0.415	0.621	0.246	0.681	0.309	0.730	0.412	0.904	0.510
AM-H [104]	arxiv 2023	0.768	0.525	0.811	0.480	0.877	0.547	0.873	0.685	0.934	0.769
AM-L [104]	arxiv 2023	0.810	0.567	0.813	0.500	0.834	0.623	0.904	0.756	0.935	0.774

Transformer Net	2025-71	

TABLE 4. Ablation experiment on the original dataset.

Method	F1 (%)	Mcc (%)	Jaccard (%)
U-Net	0.8738	0.8772	0.7786
U-Net+RBM	0.9183	0.9178	0.8496
U-Net+MFGM	0.9190	0.9186	0.8512
U-Net+MDCM	0.9245	0.9241	0.8603
U-Net+RBM+MFGM	0.9290	0.9285	0.8678
U-Net+MFGM+MDCM	0.9251	0.9247	0.8612
U-Net+RBM+MDCM	0.9263	0.9259	0.8631
RBMDC-Net	0.9313	0.9308	0.8717

transformer model (called Co-evolution	Transformer model
---------------------	---------------------	-------------------

(CoT)) to extract attentive (i.e., contribution) features at different

layers. Feature Fusion: Features from different layers are processed

by separate convolution blocks before being concatenated.

Classification: The aggregated features are sent into a standard Convolutional Network (ConvNet) classifier with three layers of

convolution

Infected region segmentation in the COVID-19 CT segmentation dataset

