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ean/.)pectw.): Ashish Vaswani et al. published a paper entitled “Attention is All You Need” in the year
2017. It brought renaissance not only in sequence data processing, but also in computational paradigm

with other data structures. The new approach won the favour of data scientists as a whole.

This new

model gained popularity as Transformer net (TransF Net) or Transformer neural network (TransF NN).
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TransF NN contains two important modules, viz., attention layer and MLP-NN which help to carry out
Natural Language processing (NLP).

Attention: In 2014, Bahdanau et al. proposed the idea of attention in the context of sequence-to-
sequence models, used for neural machine translation (NMT). The attention mechanism targets at
improving the performance of sequence-to-sequence models by allowing the model to focus on different
parts of the input sequence during calculation of each output token. It overcomes limitation of encoding
the entire input sequence into a single fixed-size vector which was earlier practice.

Luong et al. (2015) proposed different scoring mechanisms viz. Dot-Product (multiplicative
attention), Generalized (Additive) attention and Concatenation-based attention. Another way of looking
at it is global attention (where all encoder states considered) and local attention (focusing on only a
subset of encoder states). The multiplicative attention is simple, efficient, and scalable for large datasets.
It became a standard approach in later models and is it was a direct precursor to the self-attention
mechanism in the Transformer model. The local attention is instrumental in mitigating the computational
bottleneck for long input sequences, as it focuses on a smaller subset of tokens.

Attention: The attention in Transformer NN is calculated as

. QK"
Attention(Q,K,V) = softmax| — |V

N

where Q is Query matrix (current token's information), K: Key matrix (context of all tokens in the
sequence), V: Value matrix (values to be passed along after attention weighting) and dk: Dimension of
the key vectors (used for scaling).

Cross-Attention: It is essentially same except using the query from one sequence with the key
and value from another sequence.

Mix-attention: It is computed as
MixAttention = a - SelfAttention + (1 — «) - CrossAttention

This is also widely employed in sequence text modelling. ALiBi (Attention with Linear Biases) allows
more efficient handling of long sequences in transformer models.

Multi-Head Attention: The multiple attention heads are concatenated and passed through a final linear
transformation

MultiHead(Q, K, V) = Concat(head,, ..., head;, )W©®
and
head; = Attention(QWiQ, Kwk,vw})
Where WL-Q, WK, W} are learned weight matrices for each attention head i.

FlashAttention: It is an optimized CUDA-based approach (on frameworks like PyTorch and
TensorFlow) designed to efficiently compute the attention with GPUs for both training and inference
of LLMs( (GPT, BERT). It results in higher speed and increased scalability.

The evolution of architecture of TransF NN, attention mechanism, and hybridization with other
approaches, during these few years, revolutionized computational modelling. This approach is in the
front-line in dealing with multi-modal data (viz.Text, numerical time-series, sound (speech),
image/video sequence, and tactile-sense-output) with local and global inter-dependencies
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A few of Transformer net (TransF-N) architectures documented in this state-of-knowledge-methods-
module for dataTOknowledge transformation are

e OB OO COOLLPOLOLOLOLOLOOLOPOOOOOO

K@yWOYds: Artificial intelligence (Al); Convolution Neural Nets-- Capsule
Neural

PCNet,

Multi-modal multi-task hierarchical feature fusion (MM-HiFuse) ,

Estimating energy expenditure based on video (E3V) using E3V-KS5 dataset,

Performer with Graph Self-attention Mechanism,

Grouped Attention and Cross-Layer Fusion Network (GACLFNet),

Neural Ordinary Differential Equation (N-ODE) Transformer,

BioMechanically Accurate Neural Inverse KINematics solver (MANIKIN),

Gradient Origin Embeddings (GOEmbed),

Transformer-based VGQA model,

Triplet convolutional twin transformer,

Hierarchical Multi-Task Learning (HirMTL),

Memory-augmented Deformable Detection TRansformer (MD-DETR),

Geolocalization with Adapters and Auto-Regressive Transformers (GAReT),

Vision Transformer (ViT),

RealViformer.,

AuralLLM,

3D Transformers,

Multi-Relational Graph Contrastive Learning architecture (MRGCL) using a Multi-relational
Graph Hierarchical Attention Networks (MGHAN),

TWiX, C-TWiX,

Squeeze and Excitation based UNet TRansformers (SE-UNETR),

Squeeze and Excitation based High-Quality Resolution Swin Transformer Network (SE-
HQRSTNet)

BiMKANsDformer,

Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion
(MKGformer),

Transformer Choice Net (TCNet) [ Transformer Neural Network for Choice of Transformer],
Transformer-Based Framework

Physics-Informed Neural Networks (PhyslinfNNSFormer), and

EfficientNet and Vision Transformer (ViT)-based Swin Ttransformer (SwinE-Net)

Nets— MLP-Attention Mechanism-TransFormer Nets—Hybrid | GG ELES) KL

TransFormer Networks-- rsr.chem1979

CNN : [C [Computations; Computer; Chemistry, Cell, Cellestial, Cerebrum]
NN [New News; News New; Neural Nets; Nature News; News of Nature;] ]
: [Figure Image Table Script;]

Fits
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/ Transformer Net 2025-101 ‘
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Fig. 3 Diagram of new connection establishment: After convolution,
no new relationships are established for normal points (red), while new
relationships are established for occluded points (green)
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Key point detection results

(o)

Blue points: torso and limb keypoints
Red points: supplementary extremity keypoints

(o}

Pose estimation results in sports

o Red lines: Compensation pose estimation of extremities
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| Transformer Net ‘ 2025-103 ‘
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Framework. E3SFormer

o Human skeleton sequence x is extracted using a pose estimator from the video

o Then fed into a backbone to obtain motion representation F.

o Then sent to an action recognition branch (upper) and an energy estimation regression branch
(lower). The category-related joint-specific attention Ac from the action recognition branch is
transferred to the energy estimation regression branch to boost its performance.

o The multi-modal data z are used for more personalized energy estimation estimation

/ Transformer Net 2025-104
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Table 1: Survey of deep/RL methods in solving TSPs.

Mothods Learning type Network structure
Vinyals et al. (2015) SL+ AR LSTM

Bello et al. (2016) RL + AR LSTM

Khalil et al. (2017) RL + AR GNN

Nazari et al. (2018) RL + AR LSTM

Kool et al. (2018) RL + AR Transformer
Deudon et al. (2018) RL + AR Transformer

Ma et al. (2019) RL + AR GNN

Bresson & Laurent. (2021) RL + AR Transformer

Wu et al. (2022) RL + AR GNN

Lei et al. (2022) RL + AR GAT

Yang et al. (2023) RL + AR Transformer

Zhu et al. (2023) RL + AR CosFormer

Wang et al. (2023) RL + AR BERT

Jung et al. (2024) RL + AR CNN-Transformer
Zhu et al. (2024) RL + AR GEIAM

Zhao & Gu (2024) RL + AR GPN

Nowak et al. (2016) SL + NAR GNN

Joshi et al. (2019) SL + NAR GCN

Xiao et al. (2023) RL + NAR GNN

| EdgeScores |
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Table 4: Performance comparisons of our method with benchmarking methods.

TSP20
Method Type Length Gap (%) Time (ms)
Gurobi Exact 24.25 0.00 1.77e + 01
Greedy algorithm (Dijkstra, 1959) Heuristic 26.51 9.30 6.00e—02
Nearest insertion (Held & Karp, 1961) Heuristic 29.00 19.58 1.80e—01
2-OPT (Lin & Kernighan, 1973) Heuristic 26.16 7.87 8.45e + 00
Fastest insertion (Chvatal et al., 2010) Heuristic 27.84 14.79 1.83e + 00
Christofides (Christofides, 2022) Heuristic 26.51 932 3.50e + 00
SA (Aarts & Korst, 1989) Meta-heuristic 26.34 861 7.77e + 02
GA (Chung & Xu, 2012) Meta-heuristic 25.16 3.73 1.77e + 04
Ant colony optimization (Zhao et al., 2016) Meta-heuristic 26.33 8.56 4.55e + 02
Hill climbing (Yelmewad & Talawar, 2019) Meta-heuristic 28.13 16.01 1.86e + 03
NAR4TSP(GS) RL, NAR 25.75 6.19 3.61e-01
NAR4TSP(BS), B=100 RL, NAR 2459 1.40 3.54e-01
NAR4TSP(BS), B=1000 RL, NAR 2453 LS 3.82e—-01
Ours (GS) TRL, NAR 25.20 3.90 3.51e-01
Ours (BS), B=100 TRL, NAR 2450 1.05 3.65e-01
Ours (BS), B=1000 TRL, NAR 2447 0.92 3.77e-01

o ‘TRL’ stands for tr ansfer r einforcement learning;

o ‘2-OPT’ stands for 2-OPT Local Search;

o ‘GS’ stands for greedy search;

o ‘BS’ represents beam search with a width B .

o ‘Time’ indicates the inference time of solving a TSP instance on average
o

batch sizes:TSP20, TSP50, and TSP100 in searching solutions are 1024, 128, and 16,

Performer Graph Self-Attention Mechanism
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| Transformer Net ‘ 2025-108
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The block diagram depicts the streamlined process for estimating systolic and diastolic blood

pressures.
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Figure 3. A comparison of the signal before and after preprocessing. The photo demonstrates the ex ceptional noise filtering achieved,
resulting in a clean and smooth signal. Furthermore, the peaks and feet are accurately preserved, showcasing the effectiveness of the

preprocessing techniques employed.
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a: PPG Signal

b: SDPPG Signal
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Figure 4. Characterization of features on the signal. In the PPG signal, the peak is defined as the maximum value of a PPG wave, while

d.notch is defined as the minimum value between two consecutive peaks. In the SD PPG signal, amp peak refers to the maximum amplitude,

while amp foot refers to the minimum amplitude between two consecutive waves.
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Schematic Diagram of the 1D-CNN Model
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Efficient Transformer Encoder Framework

CNN-LSTM

EfficientTransformer

ransformer
0 [ | Training Time (S)
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LSTM

ResNet

Radar Chart of Training and Testing Time for Multiple Models
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3D Plot of Evaluation Metrics for Multiple Models on the
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Proportion of Normal and Abnormal Traffic on the Catalytic Reforming

Unit Process Platform

Transformer Net 2025-110 ‘

Head
k_gg.‘“L_m . _—
¥ Wre & fbow B Colle | Coler © fow | Wne O == Q g e
bt 3 Y a .. S
o | ot prnalimasapation
e A 1 Actcemenierace
nip Lip { ) -
I\ [\ ¢ tenonncn
*_Knee 1_Knse
| \ \ ) Gornteicn
®_Asnkiec L_Anikle E
Foce L_¥oor o o -
(@) (b) (©)

v" Comparison between SMPL and biomechanically constraint limb motion

& (a) skeleton of the SMPL model

& (b)) unrealistic SMPL joint configurations in the AMASS dataset

& (c) biomechanically plausible joint configurations
& (d) swivel angle parametrization of arm and leg

(d)

MANIKIN Solver

Fig. 2: Overview of MANIKIN for full-body pose estimation from sparse tracking
signals. Given the 6 DoF of the head and two hands, the neural network predicts the
foot pose, swivel angles for arms and legs, as well as joint angles in the torso. Next,
the shoulder and hip position can be obtained through forward kinematics on the
torso. Given the poses of an end effector (hand and foot), predicted swivel angles, and
base joint (shoulder and hip) positions, we use analytic geometry to get all limb joint
configurations. Combined with the predicted torso joints, we obtain a full-body pose.

AAA: 66D-Transformers-architectures & Fits

484



2 p,',\ r
P

\
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(a) swivel angel (b) mud flexion (c) base swing (d) base twist

Ilustrations of the triangular geometry of the human limbs.
v' (a) shows relationship between swivel angel and mid joint position
v (b) to (d) procedure to rotate the limb from T-pose to desired positions.

First-person view Third-person view

=, £ YIY 7 B *F @
SVATAVAY 3 ik )

Visual comparisons of different methods under the first and third person views

v" The ground truth pose is colored in transparent gray.
v' This method can perfectly match the hand observation and has better full-body prediction
results than other methods
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Transformer Net ‘ 2025-111 |
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Fig. 1: We propose the GOEmbed (Gradient Origin Embedding) mechanism that
encodes source views (0°**') and camera parameters (¢°'*') into arbitrary 3D Radiance-
Field representations g(e,d) (sec. 3). We show how these general-purpose GOEmbed-
dings can be used in the context of 3D DFMs (Diffusion with Forward Models) (sec. 5)
and for sparse-view 3D reconstruction (sec. 6).
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Fig.2: GOEmbed illustration. We demonstrate the mechanism here using the Tri-
plane representation for g(e,d), but note that this can be applied to other representa-
tions as well. The GOEmbed mechanism (eq. 1) consists of two steps. First we render
the origin (o from the context-poses ¢“**'; then we compute the gradient of the MSE
wrt. the origin (o which gives us the

o N . ) txt
between the renders and the source-views o™

GOEmbed encoding Ceuc.
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Transformer Net 2025-113 &  Generative Al
£ Reinforcement Learning
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Schematic diagram of operational mechanism of
generative artificial intelligence technology based on reinforcement learning

Network structure diagram. Triplet convolutional twin transformer
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Triplet convolution process
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Framework. HirMTL
v' Highlighting its hierarchical multi-task learning strategy for dense scene prediction tasks.
v" Integration of FPC, TAF and AICM modules,
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o which together facilitate a sophisticated feature fusion and interchange process, tailored
to enhance the network’s performance across multiple tasks.

Conv Block ;l SE ;

1x1Conv
Conv Layer
Conv Layer

Avgpool

Cx1x1 CxHxW

CxHxW Maxpool

SE

Fig. 2: Schematic of the FPC-i module, where i € {1,2,3},
highlighting its role in the hierarchical multi-task learning architec-
ture. The FPC-i module is integral for promoting single-scale level
interactions by propagating and enhancing features from higher-
level semantic and saliency detection tasks into lower-level but
larger resolution representations, thereby establishing a founda-
tional layer for subsequent multi-scale and task-level feature fusion
within the HirMTL framework.
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Visual illustration of the TAF module effectiveness

+ Demonstrating its role in adaptively fusing features across multiple scales.
&  Leftmost column: input images
& Columns two to five: four scales of features
& Final two columns: taf’s sophisticated multi-scale fusion results,
o showecasing the heatmaps of fusion features for semantic segmentation (semseg) and
salient object detection (sal),
v

The fusion ratios across scales are shown on the left side of each heatmap,
o showecasing the module’s adeptness in customizing feature fusion for different task
requirements: focusing more on the boundaries of objects for semantic segmentation,
while more on the centers of objects for salient object detection

Wi

H W
Cx—x
4 4

Detailed depiction of the TAF module, highlighting adaptive routing
mechanism across different feature scales tailored for the "t" task

v/ This illustrates the module’s capability to intelligently weigh
v"and combine multi-scale features, ensuring a robust
v"and nuanced feature integration for improved performance

v
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v

v Schematic representation of the Multi-Receptive Field Feature (MFF) module

A4

Fl

t

3x3 Conv | _
rate=12

3x3 Conv
rate=24

3x3 Conv
rate=36

®

e Q@

Avgpool2d
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t

v" highlighting its role in expanding the receptive field of features to capture global

contextual information at each scale
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discrepancy

(IGCXEXE)
4 4

SE
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(16C><E><E
42

Specific implementation details of AICM

v" It models the shared and distinctive characteristics between two tasks, alleviating the negative
transfer phenomenon in the network.
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Heat map visualizations for one class
v" Reflecting the incremental impact of the FPC, TAF, and AICM modules on the semantic
segmentation predictions of HirMTL on NYUD-v2
v" The gradation from left to right corresponds to the successive addition of modules, vividly
illustrating the refinement in predictions.

Transformer Net ‘ 2025-115

@ Frozen params (fv)

[ Trainable params (G

Architecture. MD-DETR at a given time-step t.
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Given an input image X,

query function Q(x, 0V, «) proposed to retrieve relevant memory units as a linear
combination.

The obtained information from the memory is utilized by the decoder across various decoding
layers.

The majority of the architecture remains frozen, encompassing the encoder and decoder; the
trainable modules consist of memory units M, class embedding, bounding box embedding, and
ranking function g ¢ .

AN N NN

MD-DETR

tv. 0.47]
MD-DETR -
+ BT
MD-DETR
-BT
Ground
Truth

Progression of MD-DETR performance from T1 — T4 when trained
in a multi-step class incremental setting on MS-COCO

v’ To illustrate the effectiveness of MD-DETR in addressing background relegation of previously
encountered classes, a comparison is presented between two architecture designs:
with (MD-DETR + BT) and without (MD-DETR - BT) background thresholding
In the images shown in
o First column (1st image for each block), the class {person} is relegated by MD-DETR -
BT;

AN
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O O O O

- T4}

Transformer Net

For the second column, the category {car} is relegated,

Third column displays relegation of classes {person, chair)
Fourth column shows the relegation of the category {dog}.
Ground truth block shows images with all annotations across all four tasks {T1 = =

2025-116

1. Sampling
Sample g, ~ p, and t ~ %(0,1)

2. Element Embedding

-~

®.
gki ~

Ssog=(01-0gf +1g) |
S

Positional Element Type
Information (Condition)
g a
| |
Conditioning
Embedding
m;—® M,y pe
Element Embedding I
f f; £

1

R

-
\\‘\% ll
ul

| |

k N
o

3. Vector Field Prediction

Fig. 2: Overview of the training procedure of LayoutFlow for the type-
conditioned scenario. First, we sample an initial layout from a base distribution
and a time £. Then, an intermediate sample g, is calculated by linearly interpolating
between the initial sample and the ground truth layout. Each intermediate element is
embedded jointly with the given element condition a*. Lastly, the Transformer archi-
tecture takes all the element embeddings to predict a vector field.

Transformer Net

2025-117

Feature-based s led Goal Z
Abstract Goal —@—» . T
[' Distribution #Q iOllS)
Hidden State ot R
s " Representation ag
Observed Visual - . C_B < w
Features xj, X2, ... , XT v @_’
Next Action Sampled Next Action _J
Representation —@-» Representation ay
Distribution (#K candidates)

Y

Goal
Consistency

f l

Action-based i
Abstract Goal e
Distribution

@ Sampling @ Concatenation

Hlustration of model design for abstract goal-based action anticipation.

v Yellow ellipses represent distributions and
v" Pink boxes represent various variables of the model
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Transformer Net 2025-118

Modality-Specific Encoding Intermediate Feature Fusion Classification

Positional Encoding

. - | P 1
k=) : T 2 Em2 5 5 :
£ N K = x 2 :
E s Encoder . +. . . » = > 1 = > @1 as i
E = y = 4 = 2 ;
S =t > - > = = :
2 |~ .
a as :
' Favorable
| TR
) ol £ | Prediction
&[N
" | SaUnfavorable
outcom:
Numerical
a .
Age
s
= NIHSs | —] Dense
é a El>l8 E g
o x = 3 = =
B Categorical o = | > < - as
= Sex h 4 = R { = 3
g = = . <
mTICI + » Embedding -

Overview of the proposed model architecture

o To predict functional outcomes as favorable (mRS90 of 0-2) or unfavorable (mRS90 of 3-6)
using pre-treatment 4D CTP (top) and clinical metadata (bottom)
o It consists of three components:
o (1) Modality-specific encoders to extract features from each modality
o (2) An intermediate feature fusion module using self- and cross-attention to integrate
and analyze relationships within and between modalities.
o (3) A classification module generating the final outcome scores

Modality-Specific Encoding Attention Module Classification

Q=Query; K=Key; V=Value

Predicti

Self-Attention
Add & Norm

Feedforward
Add & Norm
Feedforward

Unimodal
Medical Imaging

Numerical Q=Query; K=Key; V=Value : : :

Age L i

£ P :

_ = NIHSS | !

(© 1 ;

R . LB '

g € 2| s g s L B !
=| = . Q 4 E = ! 5 : Predicti
5|8 Categorical g 3 Sl = : < L redicti

‘S s s ﬁ o I 15 I
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1 1
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| |

Overview of the two unimodal baseline models
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Fig. A.2. Overview of the late fusion (Setup 1) baseline model
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Transformer Net ‘ 2025-119 |

Objective Retrospect and Location Module
o ange
‘§ Backtracker [( f((}ﬂ . _I_.
s EmbeddingZ Embedding L
8 Previous-states | Coordinates-system
Previous action 1 x 3136

C Gy, Aui-M_Tﬁg
§g G, % 0 }7 W, ! s W
;% © ¢ 0 ] l |- ,-
4 S — .

'—l t l W B | *\—acﬁn value

Instance Descripion: < Laptop  black  Plasic-Glass  ned Teleison |>

Fig. 2. The framework of the proposed method. The model contains four parts: (i) Data Processing; (ii) Object-Attribute
Attention graph (Section 3.3); (iii) Objective Retrospect and Location module (Section 3.4); and (iv) Navigation Strategy
(Section 3.5). The global features Fy, the Object-Attribute Attention graph G, the memory embedding Z, and location
embedding L are used as inputs to navigationstrategy which return an action executable a; and a value v;.
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Overview. Objective Retrospect Module
v ISM represents Inter-frame Sequence Memory retrospect
v ILM represents Intra-frame Layout Memory retrospect
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(c) Ours without OLM

Fig. 4. Two examples of ablation experimental visualization for Instance-Localization (IN). The descriptions of the targets in
the first and second rows are < Pillow|gray|Fabric|on|Floor > and < CellPhone|red — black|Metal — Glass|on|SideTable >,
respectively. Yellow boxes indicate targets, red lines indicates a navigation failure, and green lines indicates a successful
navigation.

v

Transformer Net 2025-120 |

Example: Binary Classification:
Pair of same fine-grained action class or not?

Video Pair Video Pair

FlayingGuitar Javelinthrow WritingOnBoard paticl same action different action

- = = = = = {5 Standerd Coarse Gralned Acon recognition _ _ _ _ _ _ _ _ _ _ __ i D
Timestamp legends for Action Phases: Takeoff | In-Flight | Entryin Water| e}g{{g%%g EE?EEE ‘

O S ot good discrimmation

e e

AN MW

igni o = 0. 3 k?nnc noe = 0.

Video-2
Action
Class-1

075
Casine - Mean

§a70 Casine - Full Seq
8 wes DTW distance
E 0.65| W= Aignabisty Score
& 060
g 0.55

050

(c) Proof of Concept

Video-3

Action
Class-2

Fig. 1: (a) Sample actions from standard coarse-grained action recognition dataset
(UCF101) (b) Sample actions from fine-grained action recognition dataset (Diving48)
(¢) For proof-of-concept, we choose a binary classification problem of fine-grained actions

v Model has to predict whether the pair of videos belong to the same class or not.
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Video Embeddings Score-mapping

TxF Is
ositive (ap)
T %—»DID ............. > T Lo
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Hard-Triplet anchor Soft-DTW Alignability  »
Labeled _ﬂ'—> —[11T] Triplet Loss AT
Videos [, Yok T
Distance D" g
negatlve s«m o ' glam)
Vn : """""""""" » Lscore
y'#cx
Alignability
Encoder f4

Fig. 2: Alignability-Verification based Metric Learning is proposed to is pro-
posed to decide how well two video instances are alignable and produce an ‘alignabil-
ity score’ for effective learning from a limited labeled set I);. Our approach employs
a triplet loss (L 7), considering videos from identical action classes as positive and
those from different classes as negative. We selectively mine hard-negatives from the
sampled minibatch based on alignment distance, presenting a challenging learning task
for the model f4. Additionally, we incorporate a matching loss Lscore to quantify the
alignment between videos, serving as a verification task to determine whether a video
pair belongs to the same class (i.e. alignable or target label = 1) or different classes
(i.e. non-alignable or target label = 0). Further details are provided in Sec. 3.1.

Action Encoder fg

4' D Class-Prediction Pg

=
Unlabeled Labeled Embeddings I
Videos ), Alignability Encoder A={fa v('))} - e B -
Unlabled Video u(?) g e Colaorarve

It
—~~~
=
-

Psuedo-label
Non-parametric
Classifier 4

Fig. 3: Collaborative Pseudo-labeling: The unlabeled instance u® undergoes pro-
cessing by both video encoders (fg and fa). For the Action Encoder fg, its predic-
tion (pg) is derived via its classification head. For the Alignability Encoder fa, the
embedding of u® computes class-wise alignability scores against a gallery of labeled
embeddings A. These scores are then used to generate a class-wise prediction p4 using
the non-parametric classifier ¢ 4. As these predictions stem from distinct supervisory
signals—pg from video-level and pa from alignability-based supervision—they offer
complementary insights, resulting in a refined collaborative pseudo-label.

Class-Prediction pa
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(e)

Existing event-based VSR paradigm v.s. proposed Event-Adapted VSR

o Existing VSR methods can generate HR frames from LR observations.

o Existing event-based VSR methods

o Incorporating the event data as a novel modality into an existing VSR method can be
approached in two ways: full fine-tuning or retraining from scratch

o (d)-(e) Our proposed event-adapted VSR. By leveraging the advantages of parameter-efficient
tuning and insights from well-designed VSR networks, our EATER achieves superior

performance with minimal parameter updates.
v

VSR Network R

I o Feature |F %R Frame |F f Frame | F f

’_> Extractor Alignment Fusion S
(a) VSR network (sliding-window)

IL

~

VSR Network 4

74 I
! LR[. v . FAf | FF Event-based
F . . F vent-bas
1, B:}gectwnﬂ | g sl S
ignment | pAb 74 VI >
! 444 To voxel

v (b) VSR network (bidirectional recurrent) o (¢) Event-based VSR network

v" Illustration of typical structure of VSR network and event-based VSR network
v" For the sake of simplicity, we remove the bicubic upsampled residual connections and
superscripts for the forward and backward event streams
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[: 3x3 Convolution @ Element-wise Sum @ Element-wise Multiplication © Concat

Event-adapted alignment (EAA) unit

Conv
|

Conv

L.

@ Element-wise Sum ©Concat @ Element-wise Sum 3x3 Conv, stride=2
[:] 3x3 Conv, stride=1

Event-adapted fusion (EAF) unit

Forward
Feature f Alignment
Extractor—L” Backwar

gl -

tional event stream

N

Bidire

(a) Sliding-window-based method + EATER (b) Bidirectional-recurrent-based method + EATER

Overview of applying EATER to existing typical EGB-only VSR methods
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(a) Apply EAA unit and EAF unit to the sliding-window-based method (e.g., EDVR)

(b) Apply the EAA unit and the EAF unit to the bidirectional recurrent-based method (e.g.,
BasicVSR

Transformer Net ‘ 2025-121 ‘

% % % %

Feature Frame Frame
. Upsampler
Extractor = Alignment Fusion | P
A A A A

A ean o Ear )
(d) (e)
Existing event-based VSR paradigm v.s. proposed Event-Adapted VSR

o (a) Existing VSR methods can generate HR frames from LR observations.

o (b) Existing event-based VSR methods

o (c) Incorporating the event data as a novel modality into an existing VSR method can be
approached in two ways: full fine-tuning or retraining from scratch

o (d)-(e) Our proposed event-adapted VSR.

v’ By leveraging the advantages of parameter-efficient tuning and insights from well-designed
VSR networks, our EATER achieves superior performance with minimal parameter updates

Ff!

\* 3x3 Convolution @ Element-wise Sum @ Element-wise Multiplication © Concat

Event-adapted alignment (EAA) unit
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(a) Sliding-window-based method + EATER (b) Bidirectional-recurrent-based method + EATER

Overview of applying proposed EATER to existing
typical EGB-only VSR methods

v’ (a) We apply the EAA unit and the EAF unit to the sliding-window-based method (e.g.,

EDVR).
v" (b) We apply the EAA unit and the EAF unit to the bidirectional recurrent-based method (e.g.,
BasicVSR)
_ Transformer Net 2025-122

t-SNE visualization of different feature distributions
o (a). Scenes with different contents also have significant commonalities compared to
degradations. And there are some differences and commonalities between degradations and

degradations
o (b). Degradation residuals can represent degradations to a certain extent and be distinguished

from background
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Prompt Pool P

i
.................................................................................................

Overview of proposed method

(a ) showcases our pipeline, which adopts an innovative strategy focused on learning degradation
residual and employs the information-rich condition to guide the diffusion process.
(b) illustrates the utilization of our prompt pool, which empowers the network to autonomously select

attributes needed to construct adaptive weather-prompts.
(c) depicts the general prompts directed by depth-anything constraint to supply scene information that

aids in reconstructing residuals.
(d ) shows the contrastive prompt loss, which exerts constraints on prompts driven by two distinct

motivations, enhancing their representations

Selection Frequency of Sub-Prompts for Different Tasks

3 Snow
[ Haze
3 Rain
[ RainDrop

Sub-Prompts Frequency

&,
e '\b'i\s‘b o Snow
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Selection frequency of sub-prompts

v" Some similar selection frequencies reflect the network’ s ability to adaptively
exploit common attributes in some similarity between tasks (e.g. rain and raindrop).

v/ At the same time, the unique prompt frequencies highlight the flexibility to adapt to the specific
characteristics of each weather condition.

<
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Figure 4. t-SNE visualization of weather-prompts for different
weather conditions

Transformer Net ‘ 2025-123 ‘
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Proposed approach. GAReT
~ (Cross-view Video Geolocalization with Adapters and Auto-Regressive Transformers)
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(A ) We begin by optimizing our image transformer encoders
(B ) with street-view frame and matching small aerial image pair.
(C) Then, for adapting our image encoder to video inputs, we add our GeoAdapter GA module
and only optimize the adapter parameters with video pairs as inputs, i.e., a street-view video V
s and corresponding large aerial image laL For training,
we sample every kth frame from the street-view video and partition the large aerial image into
non-overlapping patches
(D) In GA, we apply temporal selfattention (TSA) computation only on the CLS tokens.
For TSA computation, we reuse the spatial self-attention weights.
(E ) During inference, we first perform a Sequence-to-Image inference procedure, where given
a query street-view video,
o The unified module U = {T,GA} produces feature embeddings for both the V s and laLL
o Then, using embeddings, we retrieve the t nearest neighbor large aerial images (here we
show t =
i. and construct a small aerial image gallery G. (F)
ii. Finally, GA is removed, and feature embeddings for Ia sk and V s k are
obtained.
v" These features are then passed to our TransRetriever TAR model to obtain final frame-by-
frame GPS predictions to construct a GPS trajectory.

AN

AN N NN

| Transformer Net 2025-124

Input Video Skeleton Feature Random Transformer Based Reconstructed
Sequence Extractor Vector Masking Architecture Feature Vector

Prototypical description of skeleton-based model architecture
in self-supervised learning approach
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Hand skeleton detector in industrial environment
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/ Transformer Net 2025-125

Input RealBasicVSR (1
Window

H | i A |
S
Spatial Attention Channel Attention

Swin-based VSR Ours: RealViformer

(a) Visual comparisons. (b) Schematics of two attentions.

Fig. 1: (a) Designing a RWVSR transformer is not trivial. A Swin-based transformer
suited for standard VSR hallucinates more lines than a RealBasicVSR, a convolutional
state-of-the-art. We propose RealViformer based on our investigation of attention un-
der the RWVSR setting. RealViformer generates details with fewer artifacts than Re-
alBasicVSR [3] and the Swin-based VSR model. (b) Schematic for spatial and channel
attention. Spatial attention aggregates features based on pixel representations. Chan-
nel attention takes H x W feature map for matching across channels.

f
== S(t-1)-t

=1hey 53
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z @ | B> % i
IE-=8 31 3 I ft [— gg
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(a) Recurrent Baseline

(b) Attention

Fig. 3: (a) The recurrent baseline in Sec. 3.2 has a shallow mapping module F, re-
construction module R, upsampling module ¢/ and warping function W. W aligns the
hidden state h:—1 to feature at ¢ based on optical flow s(ft_l) _- All residual blocks are

convolutional. The concatenation between f: and he_1 are replaced with the spatial or
channel attention modules in (b) to compare the effect of attention. (b) The attention
module first applies layer normalization to f: and h¢—1 and then performs channel or
spatial attention according to Sec. 3.1. The output feature O;' concatenated with f; is
processed by the module R in (a).
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Improved Channel Attention (ICA)
Squeeze Excite

X Channel Attention
CxXHXW ~XHXW

Anennon Map
e
3x3 Element-wise
"'""' I multiplication

Fig. 5: Improved Channel Attention Module (ICA), showing self-attention for sim-
plicity. The ‘squeeze’ convolution compresses the number of input feature channels
X € RE*H>W by ratio r. The features are then rescaled by weights predicted from the
% X % attention map before being expanded by the ‘excite’ convolution back to the
original number of input channels.

3x3 ) 2 Gated Dconv Feed-Forward
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(a) Overview (b) Forward Module
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U-slnpe Architecture R
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(c) Reconstruction Module

Fig. 6: The framework of RealViformer. (a) Overview of RealViformer, following a uni-
directional recurrent framework. The outputs of the Forward module are propagated to
the next time step and upsampled by module U/ to get HR frames. (b) Explanation of
the Forward module in (a), where W denotes the warping function. The reconstruction
module R takes current frame I/ and warped hidden state hi_1 as inputs. (c) Recon-
struction module R. The shallow feature of I* and h¢—; are fused by CAF and then
forwarded to Transformer blocks with U-shape connection [39]. Module GDFN follows
Restormer [39]. Details of CAF and ICA modules are stated in Fig. 7 and Fig. 5.
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Channel Attention Fusion module (CAF)

E I:I
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D O D orm I Conv Depth-wise @ Concatenation Reshape multiplication
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Fig. 7: Details of Channel Attention Fusion (CAF) module. CAF gets the query from
current frame feature f; and {key, value} from hidden state h;_;. The attention output
is concatenated with f; to process for module output O;.
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(a) Visual comparison (b) RPS

Fig.11: (a) Visual comparison between RealViformer and its ablations. Red circles
highlight the improved details. (b) Radial Power Spectrum (RPS) of model predictions.
Using ICA improves the power of high-frequency components (blue region).
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Controlled 2D~
pose skeleton

2D synthetic frames showing sign |

Skeleton Point Tip: Ideal for web-based applications and real-time communication.

3D model with upper body and hand details
Tip: Suitable for immersive VR/ AR experiences and detailed gesture

No Sound

Non-Signing N

2

-

BeyondWords: Enabling Barrier-Free Communication
Between Hearing and Hearing-Impaired Individuals
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SL-ControlNet: Text-to-Sign Language 20-30
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Figure 2. AuraLLM: Combines ZRSL and SL-ControlNet to convert natural language input into high-quality sign language videos.
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Overview of SignMST-C
v" Starts with video frames and landmarks processed
o through 3D ResNet18 and 1D convolution for
= gpatial-temporal and geometric features

Landmarks
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Mamba-ND Block
Architecture. Mamba-ND

We visualize Mamba-3D as an example.

SSM
ConviD Linear

Linear

1D-SSM Block

o Given 3D input, we patchify it into L patches.

o During this process, we maintain the original 3D structure of the input.

o This sequence is then passed through K Mamba-ND blocks, each of which consists of a chain
of 1D Mamba layers that process the sequence in alternating orderings.

o In 3D space, we use the order H+H-W+W-T+T-. In 2D space, the sequence would be H+H-

W+W-. Finally, the sequence is reshaped back to its original 3D structure and passed to task-

specific heads for downstream processing

Dt ki 1 { W-
W+
-] =
L+
‘—l_l Linear H+
. ConvND { ConvNd
___Linear

Bi-SSM

SSM

ConviD Linear

Linear

B

Linear Linear

1D-SSM ND-SSM

|

Com;at b
[ -
W+
H-
H+
ConvND+Split
Linear

Linear

Multi-Head-SSM

Fig. 3: Variations of SSM Layer Design. Col 1 represents the standard 1D SSM
layer. Col 2 represents Bi-SSM, which adds bidirectionality in a similar fashion as
LSTM. Col 3 represents ND-SSM block, which extends Bi-SSM to more directions. Col
4 represents multi-head SSM block inspired by multi-head attention in Transformers.
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H+H-W+W-T+T-

N ~ -

o H+ — H- — W+ — W- — T+ T-
|
S
- H+ H- W+ W- - T+ | T-
[ L B

[HeH-W+W[T+T]

ke ol

N 5

1 Sequence

D Sequences D2 Sequences

(b) Visualization of wvarious Scan-
Factorization policies. Col 1: No factoriza-
(a) Different ways of arranging Mamba tion, there is only 1 sequence. Col 2: Factor-
layers. The first row visualizes alternating- izing the 3D sequence into D 2D sequences,
directional design. The second row visualizes where D is the length of a single dimension.
bidirectional design. The third row visualizes Col 3: Factorizing the 3D sequence into D?
quad-directional design. 1D sequences.

Visualization of block level design and factorization policies

Table 6: Ablation Study on Layer Designs. We report top-1 accuracy on the
ImageNet-1K validation set. The Alt-Directional design is the top-performing one.

[IN1IKt HMDB-51 1

Alt-Directional [Block Level| 79.4 59.0
Multi-Head-SSM |Layer-Level| 77.6 51.5
ND-SSM Layer-Level| 77.2 46.7
1D-SSM - 76.4 34.9
Bi-SSM Layer-Level| 74.6 32.1
Transformer Net 2025-128

Table 2: Benchmarks with more than one forecasting model using time series

(Masum et al, 2018) ARIMA and LSMT Electnc load, day RMSE Great Bnitamn, Poland LST™M
and Italy
(de Oliverra and Cymino Bagging ARIMA Mid-long term ASM, sMAPE, Canada, France, Italy. Remainder Sieve
Oliveira, 2018) and Exponential electric energy RMSE and TIC Japan, Brazil, Mexico Bootstrap
Smoothmg consumption, and Turkey
monthly
(Khan and Osmska. 2021) Fr 1l-order 2019 statistical MAPE and MSE Brazil. Russia, ARIMA
Grey Model and review of world China, India. and the
ARIMA energy, vearly Republic of South
Afnca (BRICS)
(Banik et 2l , 2021) Random Forest, Electncity load, R? and RMSE Trpura in India Ensemble
Ensemble Learmmg, hourly, weekly and RF-XGBoost
Boosting and monthly
XGBoost
(Farsietal, 2021) ARIMA ISTM.and Hourly load MAPE Rand Germany and Parallel
Parallel LSTM-CNN  consumption RMSE Malaysia LSTM-CNN
Network. Network
(Zhao et al., 2021) GRU, LSTM. RNN, Day-ahead load MAPE Australia Transformer
TCN, CNN+LSTM forecasting network
and Transformer
(Chaturved: et al_, 2022) SARIMA ISTM Monthly energy MAPE and India Facebook Prophet
RNN and Facebook demand. monthly RMSE
Prophet
(Panagiotou and Dounis, RNN. ANFIS, and Energy consumption, MSE.R. R Hospital Building's ANFISLSTM
2022) LSTM hourly MAPE and CI Energy Consumption
(Henzel et al , 2022) Naive Methods, Energy consumption, MSE and MAPE Digital-Twin Model of Facebook Prophet
Linear Regression, hourly the Building
LSTM. and the
Facebook Prophet
Method
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(Shohan et al , 2022) Hourly load demand, MAPE, R? SSE Flonda LSTM- Facebook
Facebook Prophet howrly and RMSE Prophet
and LSTM-
Facebook Prophet
(Ribeiro et al, 2022) ARIMA SVR, Energy consumption, RMSE, MAPE ESCO (Energy Service  XGBoost
Random Forest, hourly and MAE Company) Ireland
XGBoost, RNN,
LSTM, and GRU
(Shmn and Woo, 2022) Random Forest, Energy consumption, RMSE and Korea LSTM and
XGBoostand LSTM  monthly MAPE Random Forest
(Sulandan et al., 2023) ARIMA Exponential Generation of MAPE and US, Ontanio, England.  Proposed
Smoothmng, electricity, howrly RMSE Wales and Australia Ensemble
Facebook Prophet, Methods
Neural Networks,
and Proposed
Ensemble Methods
(Pieme et al, 2023) ARIMA, Electncity demand, MAPE and Benin Electncity Hybnd Approach
LSTM, GRU, hourly RMSE Company (CEB)
ARIMA-LSTM, and
ARIMA-GRU
(Koukaras et al., 2024) HGBR. LGBMR, Energy consumption, R* RMSE, ITUCERTH Smart HGBR, LGBMR
ETR.RR, BRR, hourly CVRMSE, House, Thessalonk:
CBR NRMSE and MAE  (Greece)
Transformer Net 2025-129
DVLO: Deep Visual-LiDAR Odometry with
Local-to-Global Feature Fusion and
Bi-Directional Structure Alignment
| |
: Point Cloud P : Point (Psendo Image) Features F,
| N ‘ |
?
I I I ||l
1 i ] | ——— ||'
| , | C]?i"‘". il f
| I
| . | ) i
| Pt , D Adaptve Fuion
: Jecion : Local Fused Features
| & |
| ey I e
I T E T I
. INEEEEN .
1 Image I 1
| 1 (Pseudo Points) I
| I |
| ; . I
[ Weighted Aggregation I f
| l I |||
I I f
y [ 1 '
InEEmER/ | Local Fused Features F; Global Fused Features F
Fused Features F, : Fused Features F;, :
a) Global Feature Fusion b) Local Feature Fusion 1 ¢©) Local-to-Global Feature Fusion with Bi-Directional Structure Alignment

Different fusion strategies for images and points.

o Most previous works only perform the fusion globally or locally [73]

o Present DVLO designs a local-to-global fusion strategy that facilitates the interaction of global
information while preserving local fine-grained information

o Furthermore, a bi-directional structure alignment is designed to maximize the inter-modality
complementarity
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Feature Extraction Pyramid
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Pipeline. DVLO
Novel Local-to-Global (LoGo) fusion module

& DVLO consists of
o A clustering-based Local Fuser and
o an adaptive Global Fuser.
o The pose is initially regressed from the cost volume of the coarsest fused features and
o then refined iteratively from fused features in shallower layers

Local Fuser Global Fuser

MLP

Pseudo Points
Feature F;

© element-wise product

Local-to-Global (LoGo) Fusion module

& Project points onto the image plane
o based on the coordinate system transformation matrix as cluster centers and
& Convert the image into a set of pseudo points
& Then, locally aggregate pseudo point features based on the similarities to each cluster center.
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[ Palmprint Collection ] |

1 Enrollmenst

Identuification

Verification

——e = Idenufication’ Verification Process

— - Enrolimcnt Proccss

Pipeline. DL-based palmprint recognition system

((pca ) [ Pamcode ] [ Compcode | [ ves | [ pamner |

(ca ) ([(moov ) [(moc ] [(Reme ) [ Comener )

7 (srr ) ([ mrcc ] [ brec | [ pcane | =
7 s S .

O O - -® O - >
From 1990s 2000 2003 72004 72015 72019 Now

Statistic-based Magnitude-based Ordering-based Introduction of Generic networks for
methods coding methods coding methods decp lcaming palmprint recognition

The evolution of palmprint feature extraction methodologies

/ Transformer Net ‘ 2025-132 ‘
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-
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Backbone AII

Student Model

Strong-augmented source

Overview. method for the UDA-OD task.
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Architecture. teacher—student Alg.
o Teacher model generates pseudo-labels based on weakly augmented target domain
images
o Student model is trained using both downsampled and strongly augmented inputs.

CSPC is enforced by supervising the student model with inputs of different resolutions
£ improving detection of objects at various scales
Temporal ensemble is employed for
o Robust pseudo-label selection
=  Combining classification confidence and box matching based on
= Intersection over Union (IoU) to ensure high-quality pseudo-labels.

ICFC module
o Aligns object-level features across scales and augmentations,
= Utilizing contrastive learning
v" To ensure intra-class attraction and inter-class repulsion,
e Enhancing the consistency of object representations

Method Backbone Detector Split Bicycle Bus Car
Source R50-FPN  Faster R-CNN 0.02 38.4 275 449
Oracle R50-FPN  Faster R-CNN 0.02 51.2 527 74.1
AT [4] Vi1e Faster R-CNN 0.02 51.3 649 63.6
CMT [5] Vi1e Faster R-CNN 0.02 51.2 66.0 63.7
MOTOR [32] R50 Faster R-CNN 0.02 35.6 38.6 44.0
SFA [33] R50 Deform-Detr  0.02 440 462 62.6
MTTrans [34] R50 Deform-Detr  0.02 46.5 459 65.2
DA-DETR [35] R50 Deform-Detr  0.02 46.5 459 63.1
O?Net [36] R50 Deform-Detr  0.02 459 476 63.6
AQT [37] R50 Deform-Detr  0.02 46.4 53.7 644
MTM [38] R50 Deform-Detr  0.02 47.7 544 67.2
TDD [39] R50 Faster R-CNN 0.02 49.1 51.1 64.1
MRT [40] R50 Faster R-CNN 0.02 47.1 58.1 68.7
SA-DA-Faster [7/] R50-FPN  Faster R-CNN 0.02 454 50.3 62.1
AT [4] R50-FPN  Faster R-CNN 0.02 53.3 52.1 66.0
CMT [5] R50-FPN  Faster R-CNN 0.02 53.1 55.0 66.7
Ours R50-FPN  Faster R-CNN 0.02 7.7 57.5 69.0
Source R50-FPN  Faster R-CNN All 50.8 46.7 624
Oracle R50-FPN  Faster R-CNN All 55.0 579 722
PDA [41] Vi1e Faster R-CNN All 35.9 441 544
ICR-CCR [42] V1e Faster R-CNN All 34.6 364 49.2
AT [4] R50-FPN  Faster R-CNN All 53.1 59.0 69.5
CMT [5] R50-FPN  Faster R-CNN All 53.6 58.6 69.9
Ours R50-FPN  Faster R-CNN All 53.0 63.0 719
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Select by
classification
confidence
(thre=0.8)

Temporal
Ensemble Pseudo
Label Selection

(Ours)

Qualitative comparison of pseudo-label selection strategies

v Top row: shows results using only classification confidence (threshold = 0.8)
o Leading to false detections (left) and missed detections (right).
v' Bottom row: results using proposed TEPLS strategy

Source Only CMT-AT

300 A

2004 200 A

100 100

04

—100 -
—100 A
—100 - 200 -
—200 A
—200 - —300

—300

~300 4 o0 —400

-300 -200 =100 0 100 200 300 400 —400 -200 0 200 -300 -200 -100 0 100 200 300
® motorcycle @ car ® bus rider e truck train @ bicycle person

t-SNE visualization of feature distributions for different approaches
v" Source Only (left)
v' CMT-AT (middle),
v" Proposed method (right)
o Each point represents an object feature with different colors for different object classes
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Fig. 1:
v’ (a) State-of-the-art method in self-supervised learning, i.e., CASA,
o uses 3D skeletonbased temporal video alignment as a pretext task and
o performs 3D skeleton augmentations.
v (b) This approach relies on 2D skeleton-based temporal video alignment
o conducts 2D skeleton augmentations. 2D skeleton heatmaps used, which are fed to a
video transformer for learning useful spatiotemporal and contextual features.
v' Present method
o obtains higher accuracy and
o Better robustness against missing and noisy keypoints,
o while showing superior performance in various fine-grained human activity
understanding tasks.
v (c) 2D skeleton heatmaps with RGB videos further fused, establishing
o state-of-the-art across all metrics and datasets
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Temporildnz | | SpatialPosit Postional | | _ _ Fositiomal Encoding
o?;ml‘:gu } Mucading Self-Attention Encoding :
Mgy ¢~ emssscmssSemeames
Training

! Learning in this method uses input sequences of original heatmaps and augmented heatmaps.
! Performs self-attention both in the spatial and temporal domains
o To extract effective spatiotemporal and contextual cues within each sequence and
cross-attention
o To extract contextual cues across the sequences.
! The extracted features after projection heads are passed to a matching module
o To predict correspondences across the sequences
! Matching labels generated by the augmentation module are used in the loss function

Self-Anrennon -- e

(a) CASA

Spatal > Temporal >
Self-Artenton Self-Anrentnon i

2D Skeleton Heammap Patches - ———
& (a) CASA directly processes 3D skeleton coordinates and
o conducts self-attention in the temporal domain only
& (b) This approach operates on 2D skeleton heatmaps and
o  performs self-attention both in the spatial and temporal domains
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Matching Label

Multi-modality model (MINMNENIUINMGANGAE)

! MMM includes various encoders to extract features from
o Heatmaps (top) and
o RGB videos (bottom)

! Performs late fusion to obtain the combined features

Transformer Net 2025-135

Deformation Branch

unfolding
cell decoding
LR Input
latent code
— Pooling
© x,- Cuery
Coorciante
unfolding
(P sicubic up —: = %
&S subtraction | Sstent cadle

Fig. 3: The training pipeline of our DDIR model. It consists of double branches, which
are the deformation branch and the SR branch. Each branch is composed of an encoder
and an MLP, taking the LR image and query coordinates as the inputs. The appearance
embedding [, is computed as the spatial average pooling of the 2D feature map from
the encoder E;" of the SR branch, which is fed into the decoding function f:, of the
deformation branch by concatenation. The RGB output of the deformation branch is
supervised by the deformation field. Then, the predicted deformation field feeds into
the decoding function f;" of the SR branch by concatenation. Finally, the decoding
function f;” of the SR branch outputs the target high-resolution RGB values at the
query coordinates. Combining the appearance embedding and the deformation field,
our DDIR model learns the dual-level deformable implicit representation to address
the deformations at the image and pixel levels simultaneously.
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Deformation Branch

‘%) _.g

latent code , :
Pooling Embedding 7,,

unfolding
cell decoding

unfolding
cell decoding

latent code

Fig. 3: The training pipeline of our DDIR model. It consists of double branches, which
are the deformation branch and the SR branch. Each branch is composed of an encoder
and an MLP, taking the LR image and query coordinates as the inputs. The appearance
embedding [, is computed as the spatial average pooling of the 2D feature map from
the encoder E3" of the SR branch, which is fed into the decoding function fj, of the
deformation branch by concatenation. The RGB output of the deformation branch is
supervised by the deformation field. Then, the predicted deformation field feeds into
the decoding function f;” of the SR branch by concatenation. Finally, the decoding
function f;” of the SR branch outputs the target high-resolution RGB values at the
query coordinates. Combining the appearance embedding and the deformation field,
our DDIR model learns the dual-level deformable implicit representation to address
the deformations at the image and pixel levels simultaneously.

Transformer Net ‘ 2025-136 ‘
Search Space: l Search -
Which data/feature processors? sge_ige’ s m Predictions
Which models, hyperparameters, defaults? Initialization l@‘
AutoML Process

& Search Space Setup, Initialization, Search, and Ensembling

Data Repository Search time: e.g. 5min AutoML System &

P Parameter Space
> clustering —> k representative
D datasets

Optimizing AutoML for
one search budget

AutoML system
parameters

Table: OpenML Test datasets
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Name DatasetID # instances # features # classes

robert 41165 10000 7200 10
riccardo 41161 20000 4296 2
guillermo 41159 20000 4296 2
dilbert 41163 10000 2000 5
christine 41142 5418 1636 2
cnae-9 1468 1080 856 9
fabert 41164 8237 800 7
Fashion-MNIST 40996 70000 734 10
KDDCup09_appetency 1111 50000 230 2
mfeat-factors 12 2000 216 10
volkert 41166 58310 130 10
APSFailure 41138 76000 170 2
jasmine 41143 2084 144 -
nomao 1486 34465 118 2
albert 41147 425240 78 2
dionis 41167 416188 60 355
jannis 41168 83733 54 B
covertype 1596 581012 54 i
MiniBooNE 41150 130064 50 2
connect-4 40668 67557 42 3
kr-vs-kp 3 3196 36 2
higgs 23512 98050 28 2
helena 41169 65196 27 100
kc1 1067 2109 21 2
numerai28.6 23517 96320 21 2
credit-g 31 1000 20 2
sylvine 41146 5124 20 2
segment 40984 2310 16 7
vehicle 54 846 18 4
bank-marketing 1461 45211 16 2
Australian 40981 690 14 2
adult 1590 48842 14 2
Amazon_employee_access 4135 32769 9 2
shuttle 40685 58000 9 7
airlines 1169 539383 7 2
car 40975 1728 6 B
jungle_chess_2pcs_raw_endgame_complete 41027 44819 6 3
phoneme 1489 5404 5 2
blood-transfusion-service-center 1464 748 4 2
Transformer Net 2025-137
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Architecture of MRGCL

o Different colored circles: different types of entities and
o Different colored lines: different types of relations
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o To describe the multi-relational graph.

! (a): amulti-relational graph hierarchical attention networks consisting of

o entity-level, relation-level, and layer-level attentions.
! (b): two graph augmented views with adaptive topology are automatically learned by the

variant MGHAN-1/2

! (c): asubgraph contrastive loss is designed

o To generate positives per anchor by

=  calculating strongly connected subgraph embeddings e of the anchor as the
supervised signals

Transformer Net ‘ 2025-138
i Ground Truth — s
Projection Flatten
— Proj layer
2 n=hw
: ? M Dist-based
Selecticn

View 3

E ‘ Multi- view OT CostC
Feature —

extraction Prediction

Model architecture M-MVOT

o Proposed Mahalanobis distance-based Multiview optimal transport (M-MVOT) loss for multi-
view crowd localization.
=  Modules in model
e Feature extraction,
e Projection,
e multi-view fusion and
e Decoding.
Proposed M-MVOT,
o Each point’s transport cost C is calculated via the Mahalanobis distance instead of the common
Euclidean distance under the closest camera, which
o is directed by the view ray and
o adjusted by the object-to-camera distance
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GT MVDet MVDeTr SHOT 3DROM E-MVOT M-MVOT

Predicted crowd occupancy maps of different methods
On the 3 datasets
o CVCS, MultiviewX, and Wildtrack (zoom in for better view)
o The value of crowd occupancy maps indicates the person probability of each

location
Transformer Net ‘ 2025-139
—= Training on Normal Samples - Testing to Detect Anomalies |. Normal Feature Ml Abnormal Feature  —— Decision Boundary
/ \ Homogeneous Mapping I - 1 Mixture Modeling
|
- ne Singse Ciass Center | B®  junpie Class Centers

| |

| |

| | I
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m o

{0) Unified AD

Anomaly detection task settings
Aim to implement one unified AD model (b ).
v" (¢ ) Mapping all input features to the same latent class center
o may induce the “homogeneous mapping” issue.
v" (d) Hierarchical Gaussian mixture modeling method proposed for
o More effectively capturing the complex multi-class distribution
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[ Feature vectors  []Positional embeddings [l Latent embeddings ¢ Drawing <> Repulsing
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Model overview

&\ Extracted feature vectors are sent into
o normalizing flow model
=  For transforming into latent embeddings.
& Add positional embeddings (i.e., sinusoidal position encoding) to each invertible layer as they
are
o Effective for nf-based ad methods
Ja Employ hierarchical gaussian mixture modeling approach
o To fit the latent embeddings,
= Which can assist the model against learning the “homogeneous mapping”.

Transformer Net ‘ 2025-140 ‘

I
Weighted » ]
Fusion |
| —

ICAttention 5
i+ - E3-0 B—0-

Architecture

A two-stream architecture is applied
Joint coordinates and joint motion data are respectively as the input of each stream.
Here described the stream with joint coordinates as input.
Proposed view transformation strategy I’

o Transforms the raw skeleton data X to X
Utilize defined individual contribution weights to design the individual contribution based

o Spatial-temporal attention module(ICAttention)
o Next, muti-layer spatial-temporal graph convolutional network and

Proposed attention module are combined

o To obtain the ica-gcn framework for feature learning

o The output features of ica-gcn are passed through an average global pooling operation
o Then fed to a fully connected layer with Softmax to obtain the classification score

O 00O

(o)
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o A weighted fusion strategy is utilized for finally action classification

|#qe Z

Comparison of raw skeleton data and transformed skeleton data with
proposed view transformation strategy.

o Two different action samples in one frame (in purple color and in orange color)
o belonging to the same class “kicking other person” are described

& Figure(a): shows the raw skeleton data of the two actions in 3D coordinates
o which can find the data are significantly mismatched.

& Figure(b) shows the transformed skeleton data of the two actions in 3D coordinates
o which the proposed interactive center point is the origin.

& Tt is easy to discover that the transformed skeleton data of the two samples
o show high similarity.

Temporal @

Vector U
Interactive
g:'\v Temporal
Spatial Yo Vector U7 1 — Spatial- .
Vector U FC N BN+ EC ‘ temporal ICAl'tentlon:ased
Laver ™| Relu Layer “:> Attention = s
Interactive ' Vector [/ Skeleton data X,
== Spatial
Temporal | @p Vector [/
Vector U}
Spatial @p
Vector U3
FIGURE 4. The structure of proposed ICAttenti dule. The fi d skel data X, and Xq adopt spatlal Boolmg(SP) operation and temporal

pooling g'P) o|peral|on to respectively obtain the temporal vector and spatial vector. For skeleton data X, € R°*"*¥, we can get temporal vector

Ul eR and spatial vector U5 € R“*'*¥ by performing global pooling operations along different dlmenslons on Xp. The !emporal vector U,2 and
spanal vector U‘ from X can be obtamed in similar way. Next, the interactive temporal vector U” can be calculated by weighted addition operations on
U; and U,; where the weights are proposed individual contribution weights wp and wq. Similarly, we can calculate interactive spatial vector us.uT
through a matrix production operation with US can produce a C x T x V tensor. After two fully-connected layers, the spatial-temp ion vector U
is obtained, which multiplies by input skeleton data X to finally obtain the ICAttention based interactive skeleton data X.
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Transformer Net | 2025-141 |

I | |

I | I

Visual Module l|:>l Contextual Module [l Contextual I

(e.g., CNN) : | (e.g., RNN, LSTM) Feature § :

| 1 =~ N

T T g |

' L Contextual oy |

| I 1 ontextua |
N Visual Module " " Contextual o

Sign Vldeo[:> | (e, CNN) : :>| Module (e.g., - :

I I 1 Transformer) |

: Visual : : Sequential ~ Alignment |

~ Module ~ Module  Module

Fig. 1. The main components of mainstream continuous sign language recognition models.

|

[ Classifier /CTC Loss |

Contextual Feature

Segment Feature

Backbone. DAM-MCD model.

1) CNN is used to capture frame-level features,
2) Followed by 1IDCNN-+bilstm for temporal modelling
3) Finally, a classifier is used to predict sentences.

v" Place the proposed dynamic attention mechanism module (DAM) that
o Focus on regions with motion changes in the Sequence image feature extraction
section, and
v" Place the dynamic decoding based on
o Maximum cumulative probability (MCD) that
= Segment the sequence features into
e Single-label features of pseudo-labels in the alignment module section
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Fig. 3. The structure diagram of dynamic attention mechanism.

) ]

7 Transformer Net ‘ 2025-142 |

Architecture. SpikeYOLO.

& Design.SpikeYOLO
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o two SNN blocks,
=  SNNBIlock-1 and SNN-Block-2,
o kept other architectures remain as YOLOVS.

SNN-Block-1 employs standard convolution within its ChannelConv ( * ) component
SNNBIlock- 2 utilizes re-parameterization convolution
o The difference between the two is the channel mixer module.

AN

In the low and high stages, SNN-Block-1 and SNN-Block-2, are used respectively.
The spiking neuron is I-LIF, which

o Activates integer values during training while

o Converting them to binary spikes during inference

AN

Transformer Net ‘ 2025-143 ‘

[ Linear layer ]

S S SR &

Inter-Pair Transformer Encoder

& 2 & =

[ Intra=Pair Transformer Encoder ] [ Intra=Pair Transformer Encoder ] [ Intra-Pair Transformer Encoder ] [ Intra=Pair Transformer Encoder ]

Tracklet A Tracklet B Tracklet C Tracklet D

Tracklets of the past Tracklets of the future

Architecture. TWiX (read from bottom to top)
1) First, pairs of tracklets are normalized and
2) Linearly projected
3) Then encoded with a Transformer

Encoder where

Attention is applied on the temporal dimension.

Refined representations are obtained with a second transformer encoder

Which pays attention to all other pairs.

Linear layer and a hyperbolic tangent function are used to compute an affinity score for each
pair.

AN N NN
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Update tracks and age

Matched
Tracks

Alive
Tracks

G ) ¢ ( maed ) iz )
Unmatched Unmatched
L Tracks Tracks

Tracker C-twix use a cascade matching pipeline for tracking

& The BloU-computed matrix in C-BlIoU is replaced by our TWiX module

/ Transformer Net 2025-145

Percent reduction in MSE for different attention mechanisms (Granada, NO2)
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Attention Mechanism

Percentage reduction in MSE as opposed to no attention mechanism for Granada
and pollutant NO2
v" H : number of attention heads,
v L : number of layers in Q,K, V or dense layers

pollutant NO2 O3 PM10 PM25 average
attention

O-Att:, H=2, L=2 22.4 1252 3.7 3.3 10.4
Att: H=2, I.—=2 22.2 13.7 1.6 2.6 10.0
O-Att:, H=4, L=2 22.3 13.1 -0.1 4.5 9.9
Att: H=4, LL.=2 2012 14.6 0.0 1.4 9.1
At: H=1; T.—=2 21.6 13.6 -7.0 4.8 8.3
M-Att: H=4, L=2 21.0 13.5 -3.3 -0.5 7.7
O-Att:, H=6, L.=2 20.9 13:1 -0.0 -3.7 76
M-Att: H=4, L=1 19.8 11.9 -2.5 -0.3 7.2
Att: H=2, LL=1 20.9 14.0 -6.6 -0.2 7.0

Percent reduction in MSE for different attention mechanisms for Granada
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Piktor-o-bot: The portrait drawing robot

CO/P6
#2-7110x10x256

Context Module (x5)

Architecture. RetinaFace deep neural network [14].

Architecture comprises
& ResNet-derived pyramid levels and
& Five context modules with
o Deformable convolutional layers

AAA: 66D-Transformers-architectures & Fits 536



@ multiply © concatenate Detail Prediction
High-Resolution Branch D
@ upsample @ downsample

Skip Link

—» data flow
—» constraint
<= pre-process _®_’C)—— :
JI’ features |
D,

A

details dp

transition region 7
A

S(D)

1o

dilate - erode

Image / alpha matte @p D— ground truth @
Semantic Estimation - Semantic-Detail Fusion I
Low-Resolution Branch § semantics Sp = Fusion Branch F' G(ag) | downscale + blur
t | G
architecture. MODNet deep neural network
— — — [—Jconvolution 1x‘
Image - o [ convolution 3x:

[ MaxPool
[ upsample Bloc!
[ concat

& Architecture consists of

Fused
edge-map
x16 [ g
Architecture. Dexined deep neural network [16].
& Convolution, pooling layers, and
& Upsampling blocks for scalability
/¥ﬁ \
= =
—
\ / Fig.

Result of the edge detection using
DexiNed deep NN

Result of face segmentation using
RTNet deep neural network
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Prediction

Inverse
RI-Transform

$70|gPLGAH
$20|8PLGAH
¥20|gp1IGAH
Buydwesdn

19Ae7 AU0)

&/

Encoder Decoder

HybridBlock

(h,w,c)
(how,c)
(h, w,¢c/2)

Direct Transform to
anh-Cartesian

(h, w,c/2) (h.w.c/2)

Tanh-polar

Concatenate

(h,w,c)

(h,w, ¢)

(h,w,c)

Process and architecture of RTNet deep neural network

v' Architecture consists of Residual Blocks and Hybrid Blocks

Visualizing the sequencing algorithm
& Black colour: actual drawing
& Blue colour: paths travelled in the air by the robot
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Final result: image drawn by the robot arm

Transformer Net ‘ 2025-149 ‘

® % e =

Feature Frame Frame

: . = Upsampler
Extractor, | Alignment Fusion p P
A A A

(d) (e)
Fig. 1: Existing event-based VSR paradigm vs. our proposed Event-Adapted VSR.
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(a) Existing VSR methods can generate HR frames from LR observations.

(b ) Existing event-based VSR methods.

(¢ ) Incorporating the event data as a novel modality into an existing VSR method can be
approached in two ways: full fine-tuning or retraining from scratch.

(d )-(e ) Our proposed event-adapted VSR. By leveraging the advantages ofparameter-efficient
tuning and insights from well-designed VSR networks, our EATER achieves superior
performance with minimal parameter updates

NI N NN

VSR Network

’iHR

I 4 Feature F ;'R Frame @ F f Frame | F f
— L . > Upsampler
Extractor Alignment Fusion

(a) VSR network (sliding-window)

IL
VSR Network H 7H
I LR LR . . . Af F rent-bas
F : F; F Event-based
1 B1d1.1ect10nal i { e
Alignment | gAD o, I =m0
I §51 74
4 To voxel
(b) VSR network (bidirectional recurrent) (c) Event-based VSR network

Structure. VSR network and the event-based VSR network
! For the sake of simplicity, bicubic upsampled residual connections and
! superscripts for the forward and backward event streams removed

D 3x3 Convolution @ Element-wise Sum @ Element-wise Multiplication © Concat

Event-adapted alignment (EAA) unit
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| Conv |

[ Conv |

g
s
i

[ Conv |

©Concat

@ Element-wise Sum
[:] 3x3 Conv. stride=1

@ Element-wise Sum

3x3 Conv. stride=2

Event-Adapted Fusion (EAF) unit

(a) Sliding-window-based method + EATER

Forward
£l Feanee®™ Aligument -@“’
E Extractot—] Backwar
o Alignmen
P e
L
E
%_r Forward
o Feature B Ahgnnqn Frame
-4 Extractot—1_>B w

(b) Bidirectional-recurrent-based method + EATER

Overview of applying the proposed EATER to existing typical EGB-only VSR methods.
v (a) We apply the EAA unit and the EAF unit to the sliding-window-based method (e.g., EDVR

[66]).

v" (b) We apply the EAA unit and the EAF unit to the bidirectional recurrent-based method (e.g.,

BasicVSR [4]).

Transformer Net
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Mild Cognitive Impairment Dementia
Amyloid status: Positive — Gender: M - MMSE: 28 - Age: 76 yrs Amyloid status: Positive — Gender: M - MMSE: 13 - Age: 68 yrs

Sum Ref FOG Gen FDG FDG_Bias Ref Amy Gen Amy AMY Bias Sum Ref FDG Gen FDG FDG_Bias Ref Amy Gen Amy AMY_Bias
—

Control Dementia
Amyloid status: Negative — Gender: F - MMSE: 26 — Age: 76 yrs Amyloid status: Positive - Gender. F - MMSE: 17 - Age: 74 yrs

Sum _ Ref FDG Gen FDG FDG Bias Ref Amy Gen Amy AMY Bias Sum Ref FDG Gen FDG FDG_Bias Ref Amy Gen Amy AMY_Bias

QAA
OF
»

FIGURE 1. Four different subjects depicting various clinical statuses (normal, MCl, DEM) for FDG, FBP, and FMM. The “Sum”
column displays dual tracer images (the combined FDG and Amyloid [FBP and FMM)]), “Ref FDG” represents the reference
FDG, “Gen FDG” denotes the generated FDG, and “FDG_Bias” signifies the difference map between reference and generated
FDG. “Ref Amy” represents reference Amyloid, “Gen Amy” refers to generated Amyloid, and “Amy_Bias” indicates the
difference map between reference and generated Amyloid. The image range spans from 0 to 3 SUVR, whereas the difference
map range is between -0.2 and +0.2 SUVR. Subject-related metrics, including amyloid status, gender, MMSE, and age, are
summarized atop each panel.

Transformer Net 2025-151

Assortment Encoder
Assonment—»Em(%e;‘j)lm» Se“‘: - FoFeedI
xL
Candidates Encoder y Util. Decoder i
[Candidates | (o:‘d)mg > lse".- . »| Attention . » FFeedl } - Feed ” Softmax - » Cphrzlge
xL x|

Architecture of Transformer Choice Net (TCNet). omitted the residual connections within
each sub-layer.
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Transformer Net

2025-152

Raw Input
Xt

Pseudo Sequence | | Spatio-Temporal
Generator Mixer (MLP)
xt

@

—__/

\

Qutput Layer
NxEncoders (MLP) NN output
v
= =+ | Encoder ‘;I- ,—’ Approx.
(=) Il
‘ |
=+ = Decoder
NxDecoders

Architecture of proposed PINNsFormer. PINNsFormer generates a pseudo sequence based
on pointwise input features. It outputs the corresponding sequential approximated solution. The first
approximation of the sequence is the desired solution "u(x, t).

\

ﬂincoder
—

Add & Wavelet
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Feed Forward

)

Add & Wavelet

Multi-Head
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[ Decoder Output ]
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\
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Add & Wavelet

o
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%
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a . )
Multi-Head
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\ J

4

3 -

[ Input Embedding ]

Architecture of PINNs-Former’s Encoder-Decoder Layers
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decoder is not equipped with self-attentions

1 D-Wave
—— Loss tMAE rRMSE

PINNs 1.93e-2 0.326 0.335
PINNsFormer 1.38¢e-2 0.270 0.283
PINNs + NTK 6.34e-3 0.140 0.149

PINNsFormer + NTK 4.21e-3 0.054 0.058

Results for solving the 1D-wave equation, incorporating NTK method.
v/ PINNsFormer combined with NTK outperforms all other methods on all metrics

] |20

If [ 1040

i ( B00

6 | . a0

i 100

: lx 108
. . )

04 \.-“'--.‘ '/,'M M ‘."‘s. ,x/‘ "y ‘

02 0 N-,_\ /‘_',/ 0 v 8l . \-.__“\ f/,.- | 00 |
ol 'U-"_N ““ L nl -az_M . “"» &l

Visualization of the loss landscape for PINNs (left) and
PINNsFormer (right) on a logarithmic scale

The loss landscape of PINNsFormer is significantly smoother than conventional PINNs.
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Results for solving Navier-Stokes equation

Model Navier-Stokes
Loss rMAE rRMSE
PINNs 6.72e-5 13.08 0.08
QRes 2.24e-4 6.41 4.45
FLS 0.54e-6 3.98 2.77
PINNsFormer 6.66e-6 (0.384 0.280

v PINNsFormer outperforms all baselines on all metrics.

Results for solving convection and 1D-reaction equations using Transformer architecture
with different activation functions

Convection I1D-Reaction

Loss rMAE rRMSE Loss rMAE rRMSE
RelLU 0.5256 1.001 1.001  0.2083 0.994 0.996
Sigmoid 0.1618 1.112 1.223  0.1998 0.991 0.993
Sin 0.3159 1.074 1.141 4.9e-6 0.017 0.032
ReLU+LN  0.7818 1.001 1.002 0.2028 0.992 0.993
Sigmoid+LN  0.0549 0.941 0.967 0.2063 0.992 0.990
Sin+LLN 0.3219 1.083 1.156  4.7e-6 0.016 0.033
Wavelet 3.7e-5  0.023 0.027 3.0e-6  0.015 0.030
Wavelet+LN NaN NaN NaN 39e-6 0.018 0.037

Activation

o PINNsFormer (withWavelet activation) consistently outperforms all other activation
functions in terms of training loss, rMAE, and rRMSE
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(1) PINNsFormer error

Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs, PINNs-
Former, PINNs+NTK, PINNsFormer+NTK (left to right) over 1D-reaction equation.
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(1) PINNsFormer error

Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs, FLS,
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QRes, PINNsFormer (left to right) over convection equation
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Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs and
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PINNsFormer (left to right) over 2D Navier-Stokes equation
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Signal propagation for forward and backward passes through components of a transformer
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