Available online at www.joac.info

ISSN: 2278-1862



# Journal of Applicable Chemistry







CNN-59b—Fits (Figure Image TableScript...)Base (Bfits) xAI.Medicine (xAIM)-2024 Jan-Feb

| Information Source          | sciencedirect.com;          |                        |  |
|-----------------------------|-----------------------------|------------------------|--|
| S. Narasinga Rao M D        | K. SomasekharaRao, Ph D     | R. Sambasiva Rao, Ph D |  |
| Associate Professor,        | Dept. of Chemistry,         | Dept. of Chemistry,    |  |
| Emergency Medicine dept.,   | Acharya Nagarjuna Univ.,    | Andhra University,     |  |
| Andhra Medical College,     | Dr. M.R.Appa Rao Campus,    | Visakhapatnam 530 003, |  |
| King George Hospital        | Nuzvid-521 201, I ndia      | l ndia                 |  |
| Visakhapatnam, A.P., I ndia |                             |                        |  |
| snrnaveen007@gmail.com      | sr_kaza1947@yahoo.com       | rsr.chem@gmail.com     |  |
| (+91 9848136704)            | <u>(+91 98 48 94 26 18)</u> | (+91 99 85 86 01 82)   |  |

**Conspectus:**This news information document describes passive "Fits Base" with fields like Figure Image Table Script etc.AI based display methods (under development) will enable search, derivation of knowledge/information/intelligent sparkles. The display in intelligible format on screen and hard copy is another feature. This short baseis from medical research using xAI during the period JanandFeb of 2024. The records are picked upfrom standard abstract bases and full-on-line journals. The diagnosis of critical diseases viz. pulmonary (covid-19), heart, brain (Alzheimer), diabetes, skin and. Bones are presented.

The computational methods used here are Machine learning (XGBOOST, Ensembles), RN9, fuzzy logic, Pretrained-Deep-NNs (YOLO, VGG 16/19) ,xAI stubs, Capsule Nets, eXplainable-Caps Nets etc. The xAI-probes employed in these studies includeShapley; LIME; CAM; Grad-CAM; Integrated gradients; Class Activation Maps; tSNE plot etc. These state-of-knowledge computational tools will pave toeXplainable/ interpretable/ Responsible/ Trustworthy AI products in application fields in the coming years.

*Keywords*:eXplainable AI (xAI);covid-19, cardiac-diseases, Alzheimer, diabetes, skin problems. Orthopedic disorders.

Fits Base"([Figure, Fact, False], [Image; Information], [Table; Tensor; Truth], [Script ; Sound; Science]...) Base"

CNN : [C [Computations; Computer; Chemistry] NN [New News; News New; Neural Nets; Nature News; News of Nature;]]

### The number refers to ref.No in CNN-59(a)

## Architectures & Frames of methods



| Methods                             | Approach                              | Finding                                                        | Dataset Used                                         | Accuracy<br>(%) | Class                                                       | Limitation                                                                         |
|-------------------------------------|---------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-----------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|
| Convolution<br>al Neural<br>Network | Multi-class<br>Classification         | Improved tumor<br>detection and<br>classification              | BRATS                                                | 90.5            | Glioma,<br>Meningio<br>ma, No<br>Tumor,<br>Pituitary        | Limited by small<br>dataset size, may<br>struggle with rare<br>tumor types.        |
| Fransfer<br>Learning                | Fine-tuning<br>pre-trained<br>models  | Enhanced<br>performance in<br>low-data<br>scenarios            | MICCAI BraTS<br>Challenge 2019<br>Training Data      | 88.2            | Glioma,<br>LGG                                              | Dependency on th<br>quality and<br>representativeness<br>of pre-trained<br>models. |
| Recurrent<br>Neural<br>Network      | Temporal<br>sequence<br>analysis      | Improved<br>temporal<br>understanding of<br>tumor growth       | Hospital-based<br>proprietary<br>dataset             | 87.0            | Glioma,<br>Meningio<br>ma                                   | Computationally<br>intensive, limited<br>scalability.                              |
| Ensemble<br>Methods                 | Integration of<br>multiple<br>models  | Increased<br>robustness and<br>generalization                  | TCGA<br>Glioblastoma<br>Multiforme<br>Dataset        | 92.3            | Glioblasto<br>ma<br>Multiform<br>e, Low-<br>Grade<br>Glioma | Complexity in<br>model integration<br>and interpretability.                        |
| 3D<br>Convolution<br>al Networks    | Volumetric<br>image analysis          | Improved spatial<br>representation in<br>brain tumor<br>images | ISLES -<br>Ischemic Stroke<br>Lesion<br>Segmentation | 86.7            | Stroke<br>Lesions                                           | Higher<br>computational<br>requirements,<br>longer training<br>times.              |
| Capsule<br>Networks                 | Hierarchical<br>feature<br>extraction | Enhanced feature<br>learning for<br>complex patterns           | Figshare Dataset                                     | 89.6            | Glioma,<br>Meningio<br>ma, No<br>Tumor                      | Limited<br>interpretability of<br>capsule networks.                                |
| Autoencoder<br>s                    | T Unsupervised<br>feature<br>learning | Improved<br>representation of<br>latent features               | RSNA Brain CT<br>Hemorrhage<br>Dataset               | 91.8            | Intracrania<br>1<br>Hemorrhag<br>e                          | Sensitive to noise in<br>input data, may<br>require careful<br>preprocessing.      |







## **ML** methods



## Fuzzy methods





Presentations of fuzzy rules.

(a) An instance of fuzzy rules in the form of IF–THEN generated by the TSK-based FIS.

(b) An instance of parameters in the zero-order TSK with a Gaussian membership function.

(c) An instance of a result-view of fuzzy rules.

(d) An instance of a surface-viewof fuzzy rules. The IF–THEN form and the visualized presentation

of fuzzy rules are respectively the most understandable presentation for endusers and researchers in the fuzzy logic field





The line width in the parallel set figure is determined by the number of relevant sources.  $\checkmark$ The examples of data types and interpretability methods mentioned are not limited to those  $\checkmark$ presented on the sides of the parallel set plot

| Interpretability<br>methods | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rule base                   | Rule base can be generated by decision tree-based model, including Decision Tree, Random Forest, XGBoost etc. These rules describe the conditions that lead to specific decisions, making the model easily interpretable. These models provide insights into the importance of each feature in the decision-making process, and it can also be well integrated with the SHAP principle. In the view of this, they are often used together. However, its biggest difference from fuzzy rules is that it does not include fuzzy linguistic variables, instead it relies entirely on crisp values, as shown in the panel of Fuzzy rule and Rule base in Fig. 5. |
| SHAP                        | SHAP is a game-theoretic approach that provides a unified framework for explaining the output of any machine learning model. It is based on concepts from cooperative game theory, specifically Shapley values, which allocate the contribution of each feature toward the prediction outcome. SHAP values represent the impact of each feature on the predicted outcome for a specific instance. These values enable us to understand the importance and influence of features in the model's output. An example is shown in the feature analysis panel of Fig. 5.                                                                                          |
| LIME                        | LIME is a technique for explaining the predictions of any black-box machine learning model. It aims to provide local and interpretable<br>explanations by approximating the behavior of the model around specific instances. By examining the coefficients of the approximated<br>model, LIME identifies which features were the most influential in influencing the prediction for that particular instance. These<br>explanations help users understand the model's decision-making process at an individual instance level, thus increasing transparency<br>and trustworthiness. An example is shown in the feature analysis panel of Fig. 5.             |
| Heat map                    | A heatmap is a visualization technique used to represent the importance or relevance of features in a model. The color gradient in the heatmap helps identify patterns and correlations between features and instances. A higher intensity or a distinct color in a cell or pixel signifies a stronger influence of that feature on the model's decision, while lower intensity or a different color suggests a relatively lesser impact, as shown in the heat map panel in Fig. 5.                                                                                                                                                                          |



#### Explanation methods used in disease diagnosis with sequence data.

(a) A heat map used as an explanation to highlight fragments with diverse relevance in ECG data.(b) A SHAP plot of statistical features calculated from ECG sequence data for the analysis of impact of features on the model output.

(c) A method of applying fuzzy rules to improve the interpretability of the reasoning process and results for epilepsy recognition based on statistical features calculated from EEG sequence data





## Literature



#### Literature search results following the PRISMA standards



xAI

#### XAI benefits over AI

| 28                            |  |
|-------------------------------|--|
| Reducing cost of mistakes.    |  |
| Errors can be minimized       |  |
| Code, confidence & compliance |  |
| Model performance             |  |
|                               |  |
| Benefits of XAI               |  |



### **xAI** Probes

















| Prediction probabilities<br>Non-CKD 0.14<br>CKD 0.86 | Non-CKD           | CKD<br>HgbA1C > 6.00<br>0.11<br>Gender <= 0.00<br>0.06<br>0.00 < DM Medication<br>0.05<br>54.00 < Age <= 64.00<br>0.05<br>0.00 < ACEIARB <=<br>10.44<br>Cholesterol <= 4.00<br>0.02<br>66.00 < Creatinine <=<br>0.00<br>0.00 < DLD Medicati<br>0.01<br>0.00 < History HTN <=<br>0.01 | Feature<br>HgbA1C<br>Gender<br>DM Medications<br>Age<br>ACEIARB<br>Cholesterol<br>Creatinine<br>DLD Medication<br>History HTN<br>History CHD | Value<br>9.00<br>0.00<br>1.00<br>61.00<br>4.00<br>69.00<br>\$ 1.00<br>1.00<br>0.00 |
|------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                      | History CHD <= 0. | 00<br>.00                                                                                                                                                                                                                                                                            |                                                                                                                                              |                                                                                    |





| Models           | Advantage                                                                                                                                                                                                                                                                                                                                      | Disadvantage                                                                                                                                                                                                                                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF Model         | RF ensures the availability of<br>reliable estimates for feature<br>importance (Zhao et al., 2022).                                                                                                                                                                                                                                            | RF models have longer<br>computation time and consume<br>more computational resources (<br>Biau & Scornet, 2016).                                                                                                                                                        |
|                  | RF model performs well even<br>without hyper-parameter tuning<br>(Gomes et al., 2017).                                                                                                                                                                                                                                                         | Prone to overfit with noisy data (<br>Hoarau et al., 2023).                                                                                                                                                                                                              |
|                  | The presence of missing values<br>does not hinder RF (Tyralis<br>et al., 2019).                                                                                                                                                                                                                                                                | RF is relatively hard to interpret (<br>Marchese Robinson et al., 2017).                                                                                                                                                                                                 |
| XGBoost<br>Model | XGBoost performs well with<br>little or no feature engineering<br>and can handle missing data (<br>Kang et al., 2020).                                                                                                                                                                                                                         | If not properly tuned, XGBoost is<br>more likely to overfit (Priscilla &<br>Prabha, 2020).                                                                                                                                                                               |
|                  | XGBoost is renowned for its<br>computational speed, model<br>performance, and is well-known<br>to handle large-sized datasets (<br>Chen. et al., 2015).                                                                                                                                                                                        | It is harder to tune as there are too<br>many hyper-parameters (Zivkovic<br>et al., 2022).                                                                                                                                                                               |
| GBM<br>Model     | Improved convergence speed<br>without a significant decrease in<br>accuracy (Feng, Xu, & Tao,<br>2018)<br>Gradient boosting of regression<br>trees produces competitive,<br>highly robust, interpretable<br>procedures for both regression<br>and classification, especially<br>appropriate for mining less than<br>clean data (Priedman 2001) | Achieving a balance between<br>performance and generality has<br>posed a challenge for GBMs (Luo,<br>Wei, Man, & Xu, 2022).<br>Like in XGBoost, GBM has many<br>hyperparameters that need proper<br>tuning (Anghel et al., 2018;<br>Kiatkarun & Phunchongharn,<br>2020). |

| Vantages and disadvantages of SHAP. |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| XAI<br>Method                       | Advantage                                                                                                                                                                                                                                                                                  | Disadvantage                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| SHAP<br>Analysis                    | Global interpretability—SHAP helps determine whether each variable is positively<br>or negatively related to the target variable (Lundberg & Lee, 2017).<br>Local interpretability—all features are represented with a SHAP value (Stiglic<br>et al., 2020).                               | SHAP comes with computational complexity and consumes huge computation<br>resources (Lin & Gao, 2022).<br>SHAPley values cause extrapolation to low-density areas for dependent features (<br>Lundberg & Lee, 2017).                                                                                                   |  |  |  |  |
|                                     | SHAP calculates the contribution of each feature to the prediction (Teoh, et al., 2022).                                                                                                                                                                                                   | Regardless of how small the change may be, every feature that changes the<br>prediction is attributed a SHAPley value other than zero (Janizek et al., 2018).                                                                                                                                                          |  |  |  |  |
| ICE Plots                           | A fitted model's ICE plot can reveal heterogeneous relationships between predictors and predicted values by visualizing the map between predictors and predicted values (Casalicchi et al. 2019). The process of creating an ICE plot is extremely straightforward (Goldstein et al. 2015) | According to the joint feature distribution, some points on the ICE curves might<br>be invalid data points if the feature of interest is correlated with the other<br>features (Molaner et al. 2022).<br>Generating ICE plots can be time-consuming, especially for large datasets or<br>computer model (Molaner 0000) |  |  |  |  |







| ANN             | 90 | 90 | 90 | 90 |
|-----------------|----|----|----|----|
| KNN             | 88 | 88 | 88 | 88 |
| SVM             | 89 | 89 | 89 | 89 |
| DTC + LR + NB   | 89 | 89 | 89 | 89 |
| LR + XGB + KNN  | 92 | 92 | 92 | 92 |
| RFC + XGB + SVC | 94 | 94 | 94 | 94 |













### Alzheimer's disease



159



166

04

\_\_\_\_\_

| Study                   | Year | Model   | Dataset                                      | Image<br>modalities | Number of class | Number of images                                 | Performance                                                                 | XAI      |
|-------------------------|------|---------|----------------------------------------------|---------------------|-----------------|--------------------------------------------------|-----------------------------------------------------------------------------|----------|
| Al-Adhaileh et al. [58] | 2022 | AlexNet | AD<br>dataset kaggle                         | MRI                 | -               | _                                                | Accuracy: 94.53%<br>Precision:<br>Recall:<br>F1-score: 94.12%               | Not used |
| Ullah et al. [59]       | 2022 | CNN     | Alzheimer MRI<br>preprocessed dataset kaggle | MRI                 | 4               | 6,400 samples increased<br>to 12,800 using SMOTE | Accuracy: 99.38%<br>Precision: 99%<br>Recall: 99%<br>F1-score : 99%         | Not used |
| Biswas et al. [60]      | 2022 | CNN     | AD<br>dataset kaggle                         | MRI                 | 2               | 4800                                             | Accuracy: 99.38%<br>Precision: 99.70%<br>Recall: 95%<br>F1-score: 99.32%    | Not used |
| Proposed study          | 2023 | vit-gru | Alzheimer MRI<br>preprocessed dataset kaggle | MRI                 | 4               | 6400                                             | Accuracy: 99.53%<br>Precision: 99.53%<br>Recall: 99.53%<br>F1-score: 99.53% | Used     |
|                         |      |         |                                              | MRI                 | 2               | 6400                                             | Accuracy: 99.69%<br>Precision: 99.69%<br>Recall: 99.69%<br>F1-score: 99.69% |          |
|                         |      |         | ADNI                                         | MRI                 | 3               | 2970                                             | Accuracy: 99.26%<br>Precision: 99.27%<br>Recall: 99.26%<br>F1.score: 99.26% | 1        |

## **EEG Analysis**









### Health care



# Heart (Cardiac) diseases









| Feature Name    | Description                                                                                                                                                            | Data Type   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Age             | In years between 28 and 77                                                                                                                                             | Numerical   |
| Sex             | Gender coded as M for male and F for female                                                                                                                            | Categorical |
| Chest Pain Type | Type of the chest pain experienced by the patient during examination coded as<br>TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain,<br>ASY: Asymptomatic | Categorical |
| RestingBP       | Resting blood pressure in millimeters of mercury (mmHG) between 0 to 200                                                                                               | Numerical   |
| Cholesterol     | Serum cholesterol level of the patient in milligrams per deciliter (mg/dl) between 0 to 603                                                                            | Numerical   |
| FastingBS       | Fasting blood sugar level coded as 1: if FastingBS > 120 mg/dL, and 0: otherwise                                                                                       | Categorical |
| RestingECG      | Resting electrocardiogram results, coded as, Normal, ST: having ST-T waves<br>abnormality, and LVH: showing probable or definite left ventricular hypertrophy          | Categorical |
| MaxHR           | Maximum heart rate achieved during exercise between 60 to 202                                                                                                          | Numerical   |
| Exercise Angina | Experienced angina during exercise which coded as Y: Yes, and N: No.                                                                                                   | Categorical |
| Oldpeak         | ST depression between $-2.6$ to $6.2$                                                                                                                                  | Numerical   |
| ST_Slope        | Slope of the peak exercise ST segment coded as, Up, Flat, and Down                                                                                                     | Categorical |
| HeartDisease    | Class label coded as 1 for heart disease and 0 for healthy.                                                                                                            | Categorical |







| 19<br>LIME Global Feature Importance for Heart Disease Classification |                                 |  |  |
|-----------------------------------------------------------------------|---------------------------------|--|--|
|                                                                       | LIME                            |  |  |
| DT                                                                    | ST_Slope, Sex, ChestPainType    |  |  |
| RF                                                                    | ST_Slope, ExerciseAngina, Age   |  |  |
| LR                                                                    | ST_Slope, Sex, ExerciseAngina   |  |  |
| XGboost                                                               | Sex, Cholesterol, ST_Slope      |  |  |
| LightGBM                                                              | Sex, Cholesterol, ChestPainType |  |  |
| TabNet                                                                | Sex, FastingBS, ChestPainType   |  |  |





| with SHAP LIME and Anchors |           |                        |         |  |  |
|----------------------------|-----------|------------------------|---------|--|--|
|                            | for Heart | Disease Classification |         |  |  |
|                            | LIME      | SHAP                   | Anchors |  |  |
| DT                         | 10.63     | 25.53                  | 25.53   |  |  |
| RF                         | 23.91     | 49.99                  | 21.73   |  |  |
| LR                         | 43.90     | 46.34                  | 46.34   |  |  |
| XGBoot                     | 60.60     | 81.81                  | 81.81   |  |  |
| LightGBM                   | 27.77     | 38.88                  | 58.33   |  |  |





|          | Precision | Coverage | Anchor                                     |
|----------|-----------|----------|--------------------------------------------|
| DT       | 1.00      | 0.35     | ST_Slope = Flat AND<br>ChestPainType = ASY |
| RF       | 1.00      | 0.35     | ST_Slope = Flat AND<br>ChestPainType = ASY |
| LR       | 0.99      | 0.29     | ST_Slope = Flat AND<br>ExerciseAngina = Y  |
| XGBoost  | 0.99      | 0.35     | ST_Slope = Flat AND<br>ChestPainType = ASY |
| LightGBM | 0.97      | 0.35     | ST_Slope = Flat AND<br>ChestPainType = ASY |
| TabPFN   | 0.96      | 0.29     | ST_Slope = Flat AND<br>ExerciseAngina = Y  |





| Clas     | sification repo | ort with 0 de | enoting a he | althy person | and 1 signi | fies diabetes |            |
|----------|-----------------|---------------|--------------|--------------|-------------|---------------|------------|
|          | Accuracy        | Prec-0        | Prec-1       | Recall-0     | Recall-1    | F1-Score-0    | F1-Score-1 |
| DT       | 64.77           | 77            | 49           | 66           | 62          | 71            | 54         |
| RF       | 72.15           | 83            | 58           | 73           | 70          | 78            | 63         |
| LR       | 73.29           | 86            | 58           | 72           | 77          | 78            | 66         |
| XGboost  | 73.86           | 81            | 61           | 79           | 6.3         | 80            | 62         |
| LightGBM | 70.45           | 79            | 59           | 76           | 60          | 77            | 58         |
| TabNet   | 74.57           | 72            | 76           | 57           | 86          | 63            | 81         |
| TabPFN   | 75.70           | 77            | 72           | 87           | 57          | 82            | 64         |

# **Pulmonary Disease**









| Madala   | Class Label   | Precision | Recall | F1-Score | Overall ACC |
|----------|---------------|-----------|--------|----------|-------------|
| Niodels  | Class Laber   |           |        | Raw      | 2           |
|          | Mild          | 0.8182    | 0.7759 | 0.7965   |             |
|          | Intermediate  | 0.6552    | 0.8143 | 0.7261   |             |
| ViT      | Advanced      | 0.6250    | 0.2273 | 0.3333   | 0.7133      |
|          | Macro Avg.    | 0.6995    | 0.6058 | 0.6186   |             |
|          | Weighted Avg. | 0.7138    | 0.7133 | 0.6957   |             |
|          | Mild          | 0.8936    | 0.7241 | 0.8000   |             |
|          | Intermediate  | 0.6538    | 0.7286 | 0.6892   |             |
| VGG16_bn | Advanced      | 0.4000    | 0.4545 | 0.4255   | 0.6867      |
|          | Macro Avg.    | 0.6492    | 0.6358 | 0.6382   |             |
|          | Weighted Avg. | 0.7093    | 0.6867 | 0.6934   |             |
|          | Mild          | 0.8400    | 0.7241 | 0.7778   |             |
|          | Intermediate  | 0.6588    | 0.8000 | 0.7226   | 0.7067      |
| ResNet50 | Advanced      | 0.5333    | 0.3636 | 0.4324   |             |
|          | Macro Avg.    | 0.6774    | 0.6293 | 0.6443   |             |
|          | Weighted Avg. | 0.7105    | 0.7067 | 0.7014   |             |

### **Covid-19 Disease**



AAA→CNN-59b→**xAIM-2024** 

| Comparison b                                                                                   | etween the stud             | ied expert s            | ystems for CO                 | VID-19 diagnos                       | is and the second s |
|------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Diagnosis factors                                                                              | Uncertainty<br>support      | Epidemic<br>data update | Dynamic<br>extensibility      | Decision<br>explicability            | Tool                                                                                                           |
| Symptoms contact history<br>location history                                                   | No                          | No                      | No                            | No                                   | python<br>+CLIPS                                                                                               |
| Symptoms                                                                                       | Fuzzy logic                 | No                      | No                            | No                                   | MATLAB<br>toolbox                                                                                              |
| Symptoms, contact history,<br>location history age                                             | Certainty factors           | No                      | No                            | No                                   | Mobile<br>App                                                                                                  |
| Symptoms, measures                                                                             | Triangular fuzzy<br>numbers | No                      | No                            | No                                   | Mobile and<br>web apps                                                                                         |
| Symptoms hospitalization<br>istory, epidemiological info,<br>contact exposure                  | Fuzzy logic                 | No                      | Yes                           | Clinical rules +<br>fuzzy sets plots | Web App                                                                                                        |
| Symptoms, contact history,<br>location history, age,<br>immunity period<br>(vaccine/infection) | Fuzzy logic                 | Yes                     | Yes (new rules,<br>variables) | Yes (hybrid XAI)                     | Morfees-<br>C19                                                                                                |







#### 44

RULE 1: IF Fever IS slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight THEN Cov19\_Likelihood IS extremely low WITH 0.1;
RULE 2: IF Fever IS slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Age IS our of Age IS senile) THEN Cov19\_Likelihood IS very low WITH 0.5;
RULE 3: IF Fever IS slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Pos\_Contact IS likely OR Pos\_Contact IS very likely) THEN Cov19\_Likelihood IS very low WITH 0.5;
RULE 4: IF Fever IS slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Pos\_Contact IS likely OR Pos\_Contact IS very likely) THEN Cov19\_Likelihood IS low;
RULE 5: IF Fever IS slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Max\_Locs\_Risk IS high OR Max\_Locs\_Risk IS very high) THEN Cov19\_Likelihood IS low;
RULE 6: IF Fever IS slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Diarnhoea IS NOT slight OR Conjunctivitis IS NOT slight OR Headache IS NOT slight OR slight OR slight OR slight OR slight OR slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Confusion IS NOT slight OR Chest\_pain IS NOT slight OR Jever IS NOT slight OR Chest\_pain IS NOT slight OR Jever IS NOT slight OR Chest\_pain IS NOT slight ON Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Confusion IS NOT slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Confusion IS NOT slight AND Tiredness IS slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight AND (Confusion IS NOT slight AND Tiredness IS NOT slight OR Loss\_taste\_smell IS slight THEN Cov19\_Likelihood IS very low WITH 0.1;
RULE 9: IF Fever IS NOT slight AND Tiredness IS NOT slight AND Dry\_cough IS slight AND Loss\_taste\_smell IS slight THEN Cov19\_Likelihood IS low WITH 0.1;
RULE 9: IF Fever IS NOT slig

The sample defined fuzzy rules





## **Diabetes Disease**















| 19                                           |  |
|----------------------------------------------|--|
| Relative Performance Loss for Ensemble Trees |  |
| with SHAP, LIME, and Anchors                 |  |
| for Diabetes                                 |  |
| Disease Classification.                      |  |

|          | LIME  | SHAP     | Anchors |
|----------|-------|----------|---------|
| DT       | 6.89  | -29.31   | 5.17    |
| RF       | -3.7  | 14.81    | 16.66   |
| LR       | 9.8   | 9.8 9.80 |         |
| XGBoot   | 46.51 | 32.55    | 46.51   |
| LightGBM | -3.84 | 11.53    | 19.23   |

#### Relative Performance Loss for Deep Learning models for Diabetes Disease Classification

| Deep Learning Model | Log Loss |  |
|---------------------|----------|--|
| TabNet              | 39,95    |  |
| TabPFN              | 25.72    |  |

| Anchors Local Explanations for Diabetes Disease Classification |           |          |                                                                                                                                                                       |  |  |
|----------------------------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                | Precision | Coverage | Anchor                                                                                                                                                                |  |  |
| DT                                                             | 097       | 0.09     | Age > 28 AND Insulin > low 165.00 AND Glucose > 143.25                                                                                                                |  |  |
| RF                                                             | 0.91      | 0.02     | Glucose > 143.25 AND Age > 28.00 AND Insulin > 165.00 AND<br>BMI > 28.40 AND DiabetesPedigreeFunction > 0.41 AND<br>Pregnancies > 2.00 AND BloodPressure ≤ 72.00      |  |  |
| LR                                                             | 0.98      | 0.01     | Glucose > 143.25 AND Pregnancies > 2.00 AND<br>DiabetesPedigreeFunction > 0.41 AND BloodPressure $\leq 64.00$                                                         |  |  |
| XGBoost                                                        | 0.95      | 0.02     | $ \begin{array}{l} Glucose > 143.25  AND  Age > 28.00  AND  BMI > 28.40  AND \\ BloodPressure \leq 64.00 \end{array} $                                                |  |  |
| LightGBM                                                       | 0.99      | 0.01     | $ \begin{array}{l} Glucose > 143.25 \ AND \ Age > 28.00 \ AND \ Diabetes Pedigree Function > 0.4 \\ AND \ BMI > 28.40 \ AND \ Blood Pressure \leq 64.00 \end{array} $ |  |  |
| TabPFN                                                         | 0.98      | 0.09     | Glucose > 143.25 AND Age > 28.00 AND BMI > 28.40 AND<br>DiabetesPedigreeFunction > 0.41                                                                               |  |  |

# Orthopedic diseases





integrated with hROIs.

b) 3D plotting of relative CAM activities (left) and cropping by hROIs (right).

c) CSoRmax of positive and negative cases (left), the affected side and contralateral side in the positive cases(middle), and the right and left side in the negative case(right).

d) CSoRmean of the positive and negative cases(left), the affected side and contralateral side in the positive cases (middle), and the right and left side in the negative case.

A non-paired student t-test was used. n.s. P>0.05, \*P<0.05, \*\*P<0.01, \*\*\*P<0.001.Contra.: Contralateral



✓ A non-paired student t-test was performed for comparison. n.s. P>0.05, \*P<0.05, \*\*P<0.01, \*\*\*P<0.001</p>









# Dermatology diseases





