

Journal of Applicable Chemistry

2013, 2 (6): 1701-1704 (International Peer Reviewed Journal)

Kinetics of Polymerization of Methacrylic Acid Monomer Initiated by Peroxo Disulphate – N,N,N',N'-Tetramethylethylenediamine

M. Umayavalli¹, N. Krishnaveni^{*2} and G.Siva Kumar¹

Department of Chemistry, A.P.A.College of Arts and Culture, Palani -624 601, Tamil Nadu, INDIA.
Velalar College of Engineeering and Technology, Erode-638012, Tamilnadu, INDIA

Email: umayavalli@gmail.com

Received on 10th November and finalized on 13th November 2013

ABSTRACT

The polymerization of vinyl monomer, Methacrylic acid (MAA) was carried out in acid medium under varying conditions of concentration, temperature, ionic strength and pH with potassium peroxodisulphate (PPS) - N, N, N', N'- tetramethylethylenediamine (TMEDA) couple as redox initiator at 50°C. The rate of polymerization, Rp was proportional to $[MAA]^{1.5}$, $[PPS]^{0.5}$ and independent of TMEDA. Rp was found to be insensitive to change in $[H^+]$ and also ionic strength. Rp showed an increase with increase in temperature. The activation energy Ea for the overall rate of polymerization has been found to be 10.4 k Cal.mol⁻¹. The value of composite rate constant was found to be approximately constant, 4.06 X 10⁻⁶ mol $L^2 s^{-2}$. Under steady state conditions the rate of polymerization is $Rp = (2kp^2k_{3/}k_{tl}) [MAA]^{1.5} [PPS]^{0.5}$

Keywords: Methacrylicacid, Potassium peroxodisulphate, N,N,N',N'-tetramethylethylenediamine, rate of polymerization.

INTRODUCTION

The decomposition of peroxodisulphate in aqueous medium under varying pH were done by Chandra Singh et al [1] and the polymerization of vinyl monomers using peroxodisulphate alone were studied by Venkatarao et al [2-6] and also coupled with reducing agents [7,8] TMEDA is widely used as catalyst along with $S_2O_8^{2^-}$ ion for the preparation of electrophoretic gel which finds extensive applications in biology. Polymethylacrylicacid polymer hydrogel capsules is mainly act as a therapeutic cargo in biomedical engineering [9-11]. The present paper deals the kinetics of polymerization of methacrylic acid initiated by redox pairs, potassium peroxodisulphate (PPS) and , N,N,N',N'-tetramethylethylenediamine in acid medium. From the experimental results, a suitable reaction scheme has been derived and kinetic parameters were evaluated.

MATERIALS AND METHODS

Methacrylic acid (Riedel,F.R.G) was twice distilled in the presence of ferrous sulphate and copper powder at reduced pressure (50^oC/7mmHg). N,N,N',N'-tetramethylethylenediamine (TMEDA) (Loba chemie)

was used as such without purification. Potassium peroxodisulphate (E.Merc G.R.,F.R.G) was twice recrystallized from double distilled water. For adjusting ionic strength, a stock solution of NaClO₄ was prepared by carefully neutralizing a standard solution of HClO₄ (E.Merc.G.R) with NaOH (E.Merc,G.R), the neutralization being checked by a pH meter. The rate of polymerization was followed by estimating monomer disappearance by bromometry [12-14].

RESULTS AND DISCUSSION

The rate of monomer disappearance taken to be equal to the rate of polymerization (Rp) was found to be depend on $[MAA]^{1.5}$ (Fig.1), $[PPS]^{0.5}$ and independent of [TMEDA] (table 1) under steady state condition. The dependence of Rp on $[MAA]^{1.5}$ and $[PPS]^{0.5}$ explains clearly that the initiation was by direct interaction between monomer and $S_2O_8^{2^-}$ while termination was by the mutual interaction of polymer radicals. Rp was found to be insensitive to change in $[H]^+$ and also ionic strength variation.

Effect of temperature: Rp showed an increase with increase in temperature. The activation energy for the overall rate of polymerization has been calculated from the Arrhenius plot and found to be 10.4k Cal.mol⁻¹.

Effect of composite rate constant: The value of composite rate constant $kp^2 k_6 / k_{t1}$, is evaluated and found to be approximately constant, 4.06 X 10⁻⁶ mol⁻² L² s⁻².

Reaction Mechanism and rate law: The following mechanistic sequences of reaction was found to explain the kinetics of TMEDA catalysed polymerization of MAA by peroxodisulphate ion.

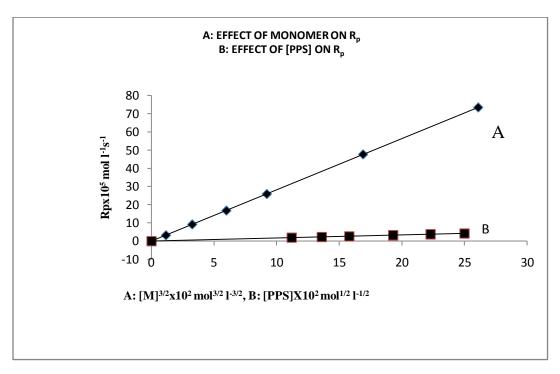
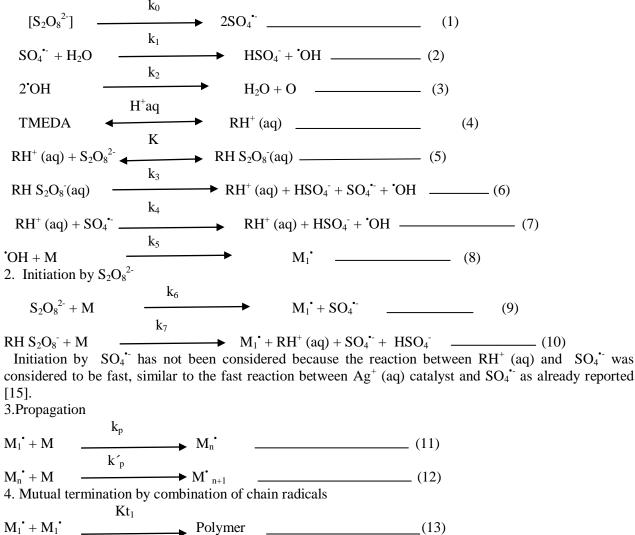



Figure 1

A: EFFECT OF MONOMER ON R_p [PPS]=3.75X10 ⁻² mol l ⁻¹ [TMEDA]=1.32X10 ⁻³ mol l ⁻³ [H ⁺]=0.05 mol l ⁻¹ I=0.21 mol l ⁻¹ T=50°C			B: EFFECT OF [PPS] ON R_P [M]=15.3X10 ⁻² mol 1 ⁻¹ [TMEDA]=1.32X10 ⁻³ mol 1 ⁻³ [H ⁺]=0.05 mol 1 ⁻¹ I=0.21 mol 1 ⁻¹ T=50°C			$\begin{array}{l} \mbox{EFFEC OF [TMEDA} ON \\ R_P \\ [M]=20.43X10^2 mol \ l^1 \\ [PPS]=3.75X10^3 mol \ l^{-3} \\ [H^+]=0.05 mol \ l^{-1} \\ I=0.21 mol \ l^{-1} \\ T=50 \circ C \end{array}$	
[M]x10 ² mol l ⁻¹	[M] ^{3/2} x10 ² mol ^{3/2} l ^{-3/2}	R _p x10 ⁵ mol l ⁻¹ s ⁻¹	[PPS]X10 ² mol l ⁻¹	[PPS]X10 ² mol ^{1/2} l ^{-1/2}	R _p x10 ⁵ mol l ⁻¹ s ⁻¹	[TMEDA]X10 ³ mol l ⁻¹	R _p x10 ⁵ mol l ⁻¹ s ⁻¹
5.11	1.15	3.24	1.25	11.2	1.88	0.66	25.9
10.2	3.25	9.19	1.87	13.6	2.30	1.32	25.7
15.3	5.98	16.8	2.50	15.8	2.65	1.65	25.6
20.4	9.21	25.9	3.75	19.3	3.25	2.64	25.8
30.6	16.9	47.7	5.00	22.3	3.76	3.30	25.9
40.9	26.1	73.5	6.25	25.0	4.20	3.96	25.7

Table -1

1. Primary reactions

Based upon the above sequence of reaction scheme, we get the following rate expression, assuming steady state principle for the concentration of free radicals.

www.joac.info

 $Rp = (2kp^2k_{3/}k_{t1}) [MAA]^{1.5} [PPS]^{0.5} [TMEDA]^0$

APPLICATIONS

These studies are useful to suggest the mechanism of reaction in polymerisation

CONCLUSIONS

The kinetics of methacrylic acid initiated by the redox pairs, potassium peroxodisulphate - N,N,N',N'tetramethylethylenediamine in perchloric acid medium was studied. From the experimental results, a suitable reaction scheme which involves the direct interaction of $S_2O_8^{2-}$ with the monomer in the initiation step and mutual termination has been proposed. The rate of polymerization of was found to depend on the $[MAA]^{1.5}$, $[PPS]^{0.5}$ and $[TMEDA]^0$. The activation energy for the polymerization reaction was 10.4 kCal. mol⁻¹. The value of composite rate constant $2kp^2k_{3/}k_{t1}$ was found to be constant.

REFERENCES

- [1] U.Chandra Singh, K.Venkatarao, J.Inorg.Nucl.Chem. 1976, 38, 541.
- [2] U.Chandra Singh, S.P.Manickam, K.Venkatarao, **1979**, 180, 589.
- [3] S.P.Manickam, K.Venkatarao, N.R.Subbuaratnam, J.Polym.Sci.Polym.Chem.Ed., 1980, 18,1679.
- [4] S.P.Manickam, K.Venkatarao, N.R.Subbuaratnam, *Eur.Polym.J.*, **1979**, 15, 483.
- [5] S.P.Manickam, U.Chandra Singh, K.Venkatarao, N.R.Subbuaratnam, *J.Polym.Sci.Polym.Chem.Ed.*, **1978**, 16, 2701.
- [6] S.P.Manickam, N.R.Subbuaratnam, K.Venkatarao, J.Macromol.Sci.Chem., 1981, A51, 1511.
- [7] M.Umayavalli, N.Krishnaveni, G.Sivakumar, *Asian Journal of Chemistry*, **2012**, 24(12), 5549-5552.
- [8] M.Umayavalli, N.Krishnaveni, G.Sivakumar, National seminar on Technologically Important Crystalline and Amorphous Solids, 1-2 March 2013, Kalasalingam University, Krishnankoil, India, ISBN 978-81-921319-0-0, 41-43.
- [9] Lucy Vojtova, Nicholas J Turro, Jefferey T Koberstein, Chem.Listy, Symposia, **2002**, 96, S201 S231.
- [10] AN.Zelikin, AD. Price, B.Stadler, small, **2010**, 6(20), 2201-2207.
- [11] Chong.Siow-Feng, Ph.D thesis, University of Melborne, Australia, 2010.
- [12] G.Mino, S.Kaizmann, E.Rasimussin, J.Polym.Sci., 1959, 58, 393.
- [13] S.Ratnasabapathy, S.P.Manickam, Macromolecules, Proc.Int.Symp.Trivandrum, India, Allied Publishers, New Delhi, **1995**, 1, 476.
- [14] S.Ratnasabapathy, S.P.Manickam, Polymer Science, Contemporary Themes, Tata MC.Graw. Hill Edn., New Delhi, **1991**, 1, 127.
- [15] S.P.Manickam, Ph.D. thesis, Madurai Kamaraj University, India, 1979.