Available online at www.joac.info

ISSN: 2278-1862

Journal of Applicable Chemistry

2018, 7 (1): 256-263 (International Peer Reviewed Journal)

ZnCl₂ Supported with Sand: An Efficient Synthetic Protocol for synthesis of Biginelli Products

Pervaz Ganie¹, Arpan Bhardew¹ and Ajmal R. Bhat²*

 Department of Chemistry, Govt. Madhav Science P.G. College, Vikram University, Ujjain-456010, INDIA
Department of Natural Science, S.B.B.S.University, Jalandhar, Punjab-144030, INDIA

Email: bhatajmal@gmail.com

Accepted on 22nd January 2018, Published online on 27th January 2018

ABSTRACT

A highly efficient synthetic procedure was developed for the synthesis of pharmacologically useful 3,4dihydropyrimidin-2-(1H)-ones/thiones using one-pot three component reaction of aromatic aldehyde, ethyl acetoacetate and urea/thiourea catalyzed by newly prepared heterogeneous catalyst (ZnCl₂ supported with Sand) in presence of ethanol solvent. Mild reaction conditions, excellent yields, operational simplicity, no tedious separation procedures, clean reaction profiles, energy-efficiency, and high atom-economy as well as the use of inexpensive and environmentally benign catalyst are the key advantages of the present method. All synthesized compounds were characterized by IR, ¹HNMR & ¹³C NMR and mass spectral data **Graphical Abstract:**

General synthesis of Dihydropyrimidines using ZnCl₂-Sand Catalyst.

Keywords: Heterogeneous Catalyst – (ZnCl₂ - Sand), Dihydropyrimidines, Biginelli Reaction, Ecofriendly Protocol.